
Institut EURECOM
2220, route des Crêtes
B.P. 193
06904 Sophia Antipolis
FRANCE

Research Report N.o 98-045

Improving Reliability of Intelligent Agents
for Network Management1

K. Marcus

December 1998

Name: Telephone: E-mail
K. Marcus: +33 93 00 26 55 marcus@eurecom.fr
Fax: +33 93 00 26 27

1Eurecom's research is partially supported by its industrial partners: Ascom, Cegetel, France Telecom,

Hitachi, IBM France, Motorola, Swisscom, Texas Instruments, and Thomson CSF.

Abstract

The Intelligent Agent technology is being more and more used in treating all

kind of information; in the case of network management, where machines moni-

tor machines, a special care must be taken with respect to the reliability of the

information. In this paper we discuss how to ensure reliability using the System

Level Diagnosis. A diagnosis test specially designed for the network management

using a multi-agent system is presented, and we show how the SLD technique was

implemented in the scope of the DIANA project.

Keywords: distributed network management, intelligent agent, information relia-

bility, system level diagnosis

i

Contents

1 Introduction 1

2 Diagnosing model 2

3 Reliable Agents 4

4 Testing 5

5 Implementation 7

6 Further Improvement in Diagnosis 8

7 Conclusion 9

ii

1 INTRODUCTION 1

1 Introduction

Intelligent Agents are becoming a new fashion in computer domain as it happened with
the Object Paradigm several years ago. Di�erent kinds of agents have appeared with
di�erent labels and functions, and many authors have already tried to classify the growing
population of agents [15, 19, 24]. One of the objective of this new trend is to give an
apparent intelligence to a light software, compared to the huge expert systems.

In the DIANA2 (Distributed Intelligent Agents for Network Administration) project,
the main objective is to achieve network management using Intelligent Agents delegating
tasks in a simple and easy way, using mainly the deliberative and reactive properties of
agents [9]. Moreover, the DIANA agents must be able to communicate and \cooperate"
to achieve in a coordinate way the goals they are given.

Delegation is not a new idea in management systems (see [25]). Other researchers
and projects have already been interested in using Intelligent Agents for network man-
agement. For instance the authors in [22] suggest mobile agents to decentralise network
management, in an extension to the client/server model in which the client and server
exchange messages during execution. In [23], a multi-agent system (HYBRID) is proposed
for tra�c management in ATM networks

The network manager that uses an Intelligent Agents system must trust his agents.
He has to be sure all the time that each agent is running and that it has correct and
updated information. Of course in most of the distributed agent systems this should be
true, but within the network administration domain this is a condition sine qua non, since
the information collected is used to control the network, to diagnose the connectivity and
security states, to change con�gurations and to improve the quality of service o�ered to
the users or to achieve any goal delegated to them.

Faults in an Intelligent Agent system may occur: hosts going down, congested links,
CPU overload, etc. and even the agent code may be corrupted. If an agent is not capable
of accomplishing its goals, then either it must be replaced, repaired or the goals he has
to achieve should be redistributed to the other agents. Hence, in order not to ruin the
management system, the network manager and the system as a whole must be aware
of the condition of its components, every possible faulty agent (where the fault may be
caused by the machine, the environment or any other reason) must be discovered as soon
as possible, and the actual set of \faulty-free" agents must be known.

Some studies in failure detection and recovery in multi-agent systems have already
begun [1, 16]. In the approach adopted in [16], the goal is to verify if the behavior of
one agent is coherent with the global goal, using social comparisons. The authors in [1]
propose a data distribution to facilitate recovery, based in a temporal communication
scheme. In the present work, the objective is to consider not only the properties of the

2Project DIANA is �nancially supported by Swisscom.

2 DIAGNOSING MODEL 2

multi-agent system, but also to take in account that this system is dedicated to network
management tasks. Therefore, \fault-free" is understood here as reliable.

To �nd out which agents are reliable or not, one must diagnose the Intelligent Agents
Network. Many di�erent diagnosis models exist, for instance: model based diagnosis
[11], alarm correlation [5, 17], probabilistic methods [12], expert systems and case based
reasoning [6, 10, 18] and the System Level Diagnosis (SLD) model. Due to the spe-
ci�c characteristics of the Intelligent Agent system case, the SLD was chosen to update
continuously the knowledge of the reliability degree of the Intelligent Agent system.

The contents of this article are the following. The choice of SLD will be discussed
in Section 2. In Section 3 the concept of reliability will be de�ned. The testing scheme
will be presented in Section 4. To be able to use SLD within the intelligent agent model,
we indicate in Section 5 how the diagnosis was implemented within the DIANA agent
architecture. In Section 6 we discuss how all the information required for the diagnosis
can be used for a further reasoning about the networks state. Finally we close the paper
with some remarks and research directions. In what follows we use agent and intelligent
agent interchangebly.

2 Diagnosing model

The System-Level Diagnosis model was introduced in [20] to diagnose faulty units in a
system. In a nutshell SLD considers each node in a network (in the present case, each
agent) as a unit. One unit may test and be tested by the other units, each test is assumed
to produce a binary result: faulty or fault-free. The result of all the tests is called the
syndrome, and the diagnosis is done using the obtained syndrome.

Much research has already been done concerning SLD, and among the possible ap-
proaches, we can �nd:

� centralized [3, 7, 14, 20] and distributed algorithms [2, 4, 8, 13, 21]

� one-step [3, 8, 20] and adaptive diagnosis [2, 4, 7, 13, 14, 21]

� faulty nodes diagnosis only [2, 3, 4, 7, 14, 20, 21], faulty nodes and links diagnosis
[3, 7, 13].

As it was mentioned in the introduction, the goal is to provide knowledge about the
reliability of the system, that is, reliability of each agent must be tested. We will consider
the Intelligent Agent system as the virtual network composed of agents and links between
agents, where the virtual links are implemented through physical wires, cables, paths
using routers, bridges, etc. In this case an SLD model with only faulty nodes detection

2 DIAGNOSING MODEL 3

is better adapted, since the virtual links are not uniquely implemented, and they may
change in time.

Both the adaptive and one-step approaches could be used, but due to the way one
agent should test another (see Section 4) the one-step method was found to be less time
and bandwidth consuming.

The implemented algorithm is based on ideas from [7]. Chutani and Nussbaumer
propose an adaptive algorithm, where tests are performed depending on previous results.
We used the same algorithm, but with an underlying test graph built as described in
[20], which is not necessarily complete. Such a test graph was proven [20] to be su�cient
to diagnose a system said \one-step diagnosable". In the DIANA project, the system is
diagnosable if at least half of the number of agents is reliable; if more than this number
are faulty, the system is considered to be undiagnosable and the SLD algorithm will not
be able to �nd which are the faulty and fault-free agents.

2
3

5

1 4

Figure 1: Test graph for �ve agents

Such a hypothesis does not seem to be unreal, since it is very unlikely that a system is
half unreliable. If this is the case, something is actually going very wrong, and a message
like \System undiagnosable" should be su�cient as a result to warn the network manager.

Using the hypothesis that at most half the number of agents is faulty, the algorithm
tries to �nd one fault-free agent, and using the results of the tests performed by this agent
(and the other fault-free diagnosed agents) all the system is diagnosed.

The algorithm is the following:
Input: Test graph S, set of nodes V (S),
Output: a fault-free unit ui 2 V (S), or an undiagnosable system.

1. Initialize the state, U := V (S); TS := ;, Candidates := ;,

2. While Length(U) > 0 and Length(Candidates) < jV (S)j+1
2 do

3. if (Length (Candidates) = 0), select an arbitrary node u 2 U , put u at the end of
the list Candidates and set U := U n fug

3 RELIABLE AGENTS 4

4. If Length(U) > 0, let uj be the last element of Candidates. Find a node ui 2 U

such that the result of ui testing uj is fault-free;

� if there is such a node ui, place ui at the end of Candidates, remove ui from
U , and goto step 2,

� otherwise, remove uj from the end of Candidates, goto to step 2.

5. If Length (Candidates) � jV (S)j+1
2

, the �rst element in the list is good; otherwise the
system is not diagnosable.

In the next sections we describe what a fault-free (or reliable) agent is, and how the
test will be performed.

3 Reliable Agents

An agent is considered to be reliable if the data that it is supposed to possess is reliable,
i.e., correct and updated. This is meant to guarantee that an agent correctly perceives its
domain, where domain here means the set of network elements the agent is responsible
for, and that its data-base matches reality.

A great part of the data stored by an agent comes through the network, sent by an
SNMP, CMIP or other agent. Some of the information is polled continuously and some
is requested when necessary. As most of the action an agent has to perform is based on
all this information (comparison with thresholds, state changes, etc), freshness must be a
property required for the collected data.

So, an agent will be said to be reliable not only if it possesses correct information
reecting the state of its domain in the network, but also if its information is recent.
This property would imply that the agent has no problems in accessing the network and
the network elements, and in processing and storing the information coming through the
network.

We face now the problem of �nding out a way to verify that a domain is correctly
perceived without checking the agent whole database and comparing it to the data coming
from the network elements. Some representative elements must be chosen in the agent
domain, and may include servers, printers, routers, switches, hosts, etc.

Of course the choice of the representative elements depends strongly on the de�nition
of the agent's domain. For instance, if the domain of an agent consists of elements in
a same Ethernet line section, then checking a sample containing some elements of this
subnetwork may su�ce to guarantee that what the agent sees is correct. But if the agent's
domain consists of several routers of a network, or elements in di�erent sections, then the
route from this agent to one element may be (most probably is) di�erent from the one

4 TESTING 5

to another element in a di�erent sub-network. In this case, choosing only some of the
elements of the domain may not be su�cient.

4 Testing

One of the most important points in the SLD implementation is the choice of the test.
From a theoretical point of view several tests exist: symmetrical, asymmetrical, and others
(see [3] for a review), but in practice the test depends on the system to be diagnosed,
on the properties and characteristics of the system and its components, on the available
testing tools, and this may even include the protocols available when telecommunications
systems are considered. In this section we propose a procedure for an intelligent agent to
test another one, using the idea of representative elements, considering that the system
is composed of intelligent agents designed for network management.

As said before, each agent is in charge of monitoring and storing information of a
certain set of network elements, the agent's domain. In order to diagnose one agent, its
neighbors will check if the information that this agent possesses are correct and updated.

In order to do this, to each agent will be assigned a test domain. The test domain of
an agent consists of its own representative elements and the representative elements of its
neighbors (see Fig. 2). Independent of the information needed for the normal talks of the
agent, a minimum set of information must be stored for the elements in the test domain.
This set of information must be the same for all agents and all representative elements,
so that information may be easily exchanged and compared.

Domain i+1Domain i-1

Agent i+1Agent i-1 Agent i

Test Domain i+1

Representative elements

Test Domain i-1 Test Domain i

Domain i

Figure 2: Test domain

For instance, the set of important information for one representative element may be
composed of:

4 TESTING 6

� the response to a Ping request,

� the network element sysUpTime of the last status request,

� the status of the �rst interface in the interface MIB table.

The agent database for diagnosis purposes would then contain a table as depicted in
Table 1, where each element Ei is a representative element in the agent test domain.

Network Element Ping? sysUpTime interface status
E1 OK . . . up
E2 OK . . . down
E3 OK . . . up
E4 NO ? ?
� � �

Table 1: Test domain table

The test procedure is the following: periodically each agent sends to its neighbors the
information it has collected of these neighbor representative elements, and also receives
from each neighbor information about the neighbor representative elements. The received
information is then compared to the data locally collected. The test consists in checking,
for each neighbor and each representative element, that variables like Ping response or
interface status have identical values in both samples, and checking that the values of a
variable as sysUpTime di�er in the two samples only in a reasonable amount of time { the
acceptance interval. If a certain percentage of the representative elements of one neighbor
passes the test, then the agent considers this neighbor to be reliable. This percentage
may vary from network to network; in the DIANA demonstration the absolute majority,
(i.e. > 50%) was chosen as the number of elements that should succeed the test.

The periodicity of the test and the acceptance interval depend strongly upon the
polling frequency (and this depends on the number of representative elements being mon-
itored). Experiments must be made to reach a balance between these values, so that
wrong conclusions are not produced because of too small and/or large values. Of course,
a less frequent periodicity implies having a greater acceptance interval, but other factors
may inuence the �nal values.

As it was de�ned, the test is clearly asymmetrical, since each agent tests the infor-
mation concerning the representative elements of its neighbors, an not its own. So, since
di�erent tests are being performed, the outcome of A testing B and B testing A may
be di�erent. This can occur when di�erent sets of representative elements are reached
di�erently by di�erent agents. In Section 6 we point out how this kind of representative
elements information can lead to some conclusions about the network reachability.

5 IMPLEMENTATION 7

5 Implementation

In the DIANA agent architecture [9], the SLD is implemented as a skill, that is, an
independent module that is loaded only when needed, and that consists of several tasks
whose goals are specialized in a domain activity. Two di�erent skill modules are necessary:
one common for every agent, the SLD or slave module, and one special for the master
agent, the SLDM or master module.

The agent that is asked to load the SLDM module is considered to be the master,
and should perform some special functions besides the simple SLD test. The result about
the agents state is also updated by the master agent, and is available to the other skill
modules.

Master role

1. Get the agents list (pre-requisite information)

2. Create an information per agent, representing the agent status

3. Determine each agent neighborhood

4. Ask the other agents to start the SLD, sending to them the needed data for the
SLD module to start

5. Repeat

(a) Wait for the slave agents to send their diagnosis, and consolidate the result

(b) Updates each agent status

Slave role

The slave starts with the information given by the master: the master identi�cation and
its neighbors. In order to execute, this module needs that a monitor module updates
information about the representative elements. To consider the diversity of domains, the
agent may be told which kind of representative elements and how many elements must
be chosen. The agent role is then the following:

1. Filter the agent domain to obtain the representative elements, using the type of
each network element

2. Send to its neighbors its representative elements

3. Get its neighbors representative elements

6 FURTHER IMPROVEMENT IN DIAGNOSIS 8

4. Ask to the monitoring skill module to update the beliefs about its own representative
elements, and the representative elements of each neighbor agent

5. Repeat

(a) Get the local monitoring result

(b) Send to the neighbors the local monitoring result

(c) Get the distant monitoring result

(d) Consolidate the results obtaining the diagnosis about its neighbors

(e) Send to the master its diagnosis about its neighbors

(f) Wait until next consolidation time

In the demonstration, the goal is to have information about some network elements
(NE), and the agents monitor the NE in a delegated way. The information collected by
the agents is sent to a master agent; this one, based on the diagnosis given by the SLD,
decides to use or not the collected information, and to redistribute the domains, if the
status of an agent changes. A scenario showing the utility of SLD was prepared, where
the fault of a NE is not noticed, because the agent that should monitor this NE was not
reliable when the fault occurred.

6 Further Improvement in Diagnosis

With the information collected for the agent system diagnosis, more than a simple com-
parison can be done. Inferences about the information concerning several elements can
be drawn, if su�cient data about the topology of the network is maintained.

What will be described in this section are examples of how one could diagnose more
than only the intelligent agent system; diagnose further means to extend the procedure
of testing an agent to a more comprehensive understanding of the network state.

For instance, if a set of elements in a same subnetwork do not answer to a Ping request,
then there must be a network problem to attain this subnetwork, and the agent cannot
conclude anything about this domain. If only some elements do not answer, then these
network elements may be down. In this case if the used protocol is unreliable, before
warning the manager, the agent should repeat the request.

For each representative element, if one of the collected sysUpTime is too old, then
most probably there is a problem with the status request or with the network element,
and a new request should be done (if the protocol is unreliable). But if this happens for
a great number (to be de�ned) of network elements, then the agent that has the oldest

7 CONCLUSION 9

data has some problem in treating the informations it receives and will be seen as faulty
by its neighbors; remark that this agent will see its neighbors fault-free.

The agent should now compare the network element \status" of the elements that
have an updated information. If they di�er for one element, then another request may
be made. And, as before, if this happens for a great number (to be de�ned) of network
elements, then one of the agents has a problem. In fact in this case each agent will see its
neighbor faulty.

Table 2 summarizes the situation. The column Correlation means that the elements
that present the same variable values are reached using the same route starting from the
agent. A white cell implies that the associated value is not relevant for the diagnosis, or
is not available. The notation t2 >> t1 means that t2 is more recent that t1, and t2 ' t1
means that the values are within an acceptable interval.

Agent1 Agent2

Ping Time if Status Ping Time if Status Correlation Result

No No NE problem

No Yes Reachability problem

OK t1 OK t2 >> t1 No NE or SNMP problem

OK t1 OK t2 >> t1 Yes Agent1 unreliable

OK t1 S1 OK t2 ' t1 S2 6= S1 No NE or SNMP problem

OK t1 S1 OK t2 ' t1 S2 6= S1 Yes Agent1 or Agent2 unreliable

Table 2: Diagnosis table

7 Conclusion

The Intelligent Agent technology is being more and more used in treating all kind of
information; in the case of network management, where machines monitor machines, a
special care must be taken with respect to the reliability of the information.

In this paper we discussed how to ensure reliability using the System Level Diagnosis.
A diagnosis test specially designed for the network management using a multi-agent sys-
tem was presented, and we showed how the SLD technique was implemented in the scope
of the DIANA project.

As already pointed out, the information collected for the diagnosis test may be also
used to have an overall idea of the network health state and its connectivity. Some work
in this direction will be conducted within the DIANA project, where the main idea is
summarized be the scheme depicted in �gure 3.

REFERENCES 10

2

3

4

5

6

7

8

1

Topology
analysis

Reliable

Agent
Diagnosis

Non-Reliable

OK Re-assignment
Domain

Figure 3: Future work

The SLD technique can be also used and adapted to other specialized multi-agent
systems. The most important point { as with every SLD application { is to design a
suitable diagnosis test, as the one presented in this paper.

Acknowledgments

Thanks to all the DIANA team for their support and useful discussions that allowed to
achieve this work: P. Conti, M. Cheikrouhou, and J. Labetoulle.

References

[1] A. K. Bansal, K. Ramohanarao, and A. Rao. Distributed storage of replicated be-
liefs to facilitate recovery of distributed intelligent agents. In Intelligent Agents IV,
Lecture Notes in Arti�cial Intelligence, pages 77{91. Springer Verlag, 1997.

REFERENCES 11

[2] M. Bearden and R. P. Bianchini Jr. E�cient and fault-tolerant distributed host
monitoring using system-level diagnosis. In A. Schill, C. Mittasch, O. Spaniol, and
C. Popien, editors, Distributed Platforms, pages 159{172. Chapman & Hall, Feb.
1996.

[3] G. Berthet. Extension and Application of System-level Diagnosis Theory for Dis-
tributed Fault Management in Communication Networks. PhD thesis, �Ecole Poly-
technique F�ed�erale de Lausanne, Lausanne, CH, 1996.

[4] R. P. Bianchini Jr. and R. W. Bunskens. Implementation of on-line distributed
system-level diagnosis theory. IEEE Transactions on Computers, 41(5):616{626, May
1992.

[5] A. T. Bouloutas, S. B. Calo, A. Finkel, and I. Katzela. Distributed fault identi�ca-
tion in telecommunication networks. Journal of Network and Systems Management,
3(3):295{312, 1995. Distributed Fault Management, Management Domain, Alarms,
Alarm Domain.

[6] S. Brugoni, G. Bruno, R. Manione, E. Montariolo, E. Paschetta, and L. Sisto. An
expert system for real time fault diagnosis of the italian communication networks. In
Proceedings of the IFIP TC6/WG6.6 Third International Symposium on Integrated
Network Management, pages 617{628. Elsevier Science Publishers, 1993.

[7] S. Chutani and H. J. Nussbaumer. Extending the theory of system-level diagnosis
for communication networks. Technical Report 94/58, �Ecole Politechnique F�ed�erale
de Lausanne, D�epartement d'Informatique, Lausanne, CH, Aug. 1994.

[8] S. Chutani and H. J. Nussbaumer. On the distributed fault diagnosis of computer
networks. Technical Report 94/56, �Ecole Polytechnique F�ed�erale de Lausanne, Lau-
sanne, CH, 1994.

[9] P. Conti, J. Labetoulle, K. Marcus, and M. Cheikhrouhou. Network management
system with intelligent agents. a �rst step with sld. In HPOVUA'98 Workshop,
Rennes, FR, 1998.

[10] R. Cronk, P. Callahan, and I. Bernstein. Rule-based expert systems for network
management and operations: An introduction. IEEE Network, pages 7{21, 1988.

[11] R. Davis and W. Hamscher. Model-based reasoning: Troubleshooting. In W. Ham-
scher, L. Console, and J. de Kleer, editors, Readings in Model-Based Diagnosis, pages
3{24. Morgan Kaufmann, 1992.

REFERENCES 12

[12] R. Deng, A. Lazar, and W. Wang. A probabilistic approach to fault diagnosis in
linear lightwave networks. In Proceedings of the IFIP TC6/WG6.6 Third Inter-
national Symposium on Integrated Network Management, pages 697{708. Elsevier
Science Publishers, 1993.

[13] E. P. Duarte Jr, T. Nanya, G. Mans�el, and S. Noguchi. Non-broadcast network
fault-monitoring based on system-level diagnosis. In A. A. Lazar, R. Saracco, and
R. Stadler, editors, Integrated Network Management V, pages 597{609, San Diego,
USA, May 1997. IFIP, Chapman & Hall.

[14] S. Hakimi and K. Nakajima. On adaptive system diagnosis. IEEE Transactions on
Computers, c-33(3):234{240, Mar. 1984.

[15] N. R. Jennings and M. Wooldridge. Software agents. IEEE Review, pages 17{20,
1996.

[16] G. A. Kaminka and M. Tambe. Social comparison for failure detection and recov-
ery. In Intelligent Agents IV, Lecture Notes in Arti�cial Intelligence, pages 127{141.
Springer Verlag, 1997.

[17] S. K�atker and K. Geihs. A generic model for fault isolation in integrated management
systems. Journal of Network and System Management, 5(2):109{130, Feb. 1997.

[18] L. Lewis. A case-based reasoning approach to the resolution of faults in communi-
cation networks. In Proceedings of the IFIP TC6/WG6.6 Third International Syspo-
sium on Integrated Network Management, pages 671{682. Elsevier Science Publishers,
1993.

[19] H. S. Nwana. Software agents: An overview. Knowledge Engineering Review,
11(2):205{244, Oct. 1996.

[20] F. P. Preparata, G. Metze, and R. T. Chien. On the connection assignment problem
of diagnosable systems. IEEE Transactions on Electronic Computers, EC-16(6):848{
854, Dec. 1967.

[21] S. Rangarajan, A. T. Dahbura, and E. A. Ziegler. A distributed system-level diag-
nosis algorithm for arbitrary network topologies. IEEE Transactions on Computers,
44(2):312{334, Feb. 1995.

[22] A. Sahai, C. Morin, and S. Billiart. Intelligent agents for a mobile network manager.
In D. Gaiti, editor, Intelligent Networks and Intelligence in Networks, pages 449{463.
IFIP, Chapman & Hall, 1997.

REFERENCES 13

[23] F. Somers. HYBRID: Unifying centralised and distributed network management
using intelligent agents. In Networks Operation and Maintenance Symposium
(NOMS96), 1996.

[24] M. Wooldridge, J. P. M�uller, and M. Tambe. Agent theory, architectures, and lan-
guages: A bibliography. In M. Wooldridge, J. P. M�uller, and M. Tambe, editors,
Intelligent Agents II, volume 1037 of Lecture Notes in Arti�cial Intelligence, pages
408{431. Springer Verlag, 1996.

[25] Y. Yemine, G. Goldszmidt, and S. Yemine. Network management by delegation.
In 2nd International Symposium on Integrated Network Management, pages 95{107,
Washington, DC, apr 1991.

