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ABSTRACT

Security issues have almost been ignored during the first decade

of digital watermarking. As a result, many released watermark-

ing algorithms are weak against hostile intelligence. For instance,

block replacement attacks defeat watermarking systems which do

not consider the self-similarities of the host signal during embed-

ding. Such attacks replace each signal block with another one, or

a combination of other ones, taken at a different location. In this

paper, a novel strategy will be presented to generate a signal co-

herent watermark to achieve immunity against block replacement

attacks. The basic idea consists in imposing a linear relationship

between watermark samples embedded at different locations, with

respect to their local neighborhoods which are characterized with

Gabor features.

1. INTRODUCTION

Digital watermarking was initially introduced in the 90’s to en-

sure Intellectual Property (IP) protection [1]. Encryption alone is

indeed not enough and a complementary technology is required.

Sooner or later, encrypted multimedia content is decrypted to be

eventually presented to a human being. At this very moment, mul-

timedia content is left unprotected and can be easily copied and/or

manipulated. Digital watermarking basically consists in hiding

some information into digital content in an imperceptible manner.

Research has mainly investigated how to improve the trade-off be-

tween three key parameters: robustness, imperceptibility and ca-

pacity. However, despite the fact that watermarking technologies

are likely to be released in a hostile environment, security issues

have almost been neglected. This explains in part why recent ini-

tiatives to introduce digital watermarking into Digital Right Man-

agement (DRM) frameworks have failed e.g. copy/playback con-

trol for the Digital Versatile Disk (DVD) [2] and for music [3].

Those setbacks seem to have significantly reduced the original en-

thusiasm from industries. As a result, security evaluation is now a

key issue in digital watermarking.

To assess the security of different watermarking schemes, re-

searchers try to anticipate hostile behaviors from malicious cus-

tomers. In particular, collusion attacks have been shown to defeat

many video watermarking algorithms [4]. The basic idea consists

in combining several watermarked video frames to obtain unwater-

marked content. This approach has been further extended to a finer

resolution by using signal blocks instead of full frames [5]. Mul-

timedia content is highly repetitive and it is consequently possible
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to exploit the self similarities of the signal to replace each sig-

nal block with another perceptually similar one. Those Block Re-

placement Attacks (BRA) defeat common watermarking schemes

such as Spread Spectrum (SS) and Quantization Index Modula-

tion (QIM) [6]. BRA basically exploit the fact that watermarking

algorithms do not consider the self-similarities of the host signal

during embedding. As a result, similar signal blocks are likely to

carry uncorrelated watermark samples. This is a weak link that an

attacker can exploit to defeat the protection system.

Intuitively, if similar signal blocks carry similar watermarks,

BRA are likely to be ineffective. In other terms, the embedded

watermark has to be coherent with the self-similarities of the host

signal. In this paper, a possible way to obtain such coherent wa-

termarks for still images is presented. In Section 2, Gabor filters

are introduced to characterize the neighborhood of each pixel in

the image. Next, in Section 3, a linear form is defined in the Gabor

space to ensure that watermark samples inherit the same linear re-

lationships as the Gabor-defined neighborhoods of the host signal.

The resilience of this novel watermark against BRA is then eval-

uated in Section 4 in comparison with standard SS watermarks.

Finally, conclusions are drawn in Section 5 and tracks for future

work are given.

2. NEIGHBORHOOD CHARACTERIZATION WITH

GABOR FILTERS

In order to impose a linear relationship between watermark sam-

ples with respect to the neighborhood of the considered pixel, it is

first necessary to isolate some features to characterize this neigh-

borhood. Gabor features are among the most popular ones and

have been now used for a long time for a broad range of applica-

tions including image analysis and compression [7], texture seg-

mentation [8], face authentication [9] and facial analysis [10]. Im-

ages are classically viewed either as a collection of pixels (spatial

domain) or as the sum of sinusoids of infinite extent (frequency

domain). But those representations are just two opposite extremes

in a continuum of possible joint space/frequency representations.

In such a perspective, frequency is viewed as a local phenomenon

that can vary with position throughout the image. Furthermore Ga-

bor wavelets have also received an increasing interest since they

are particularly close to 2-D receptive fields profiles of the mam-

malian cortical simple cells [11].

The response of an input image i to a Gabor Elementary Func-

tion (GEF) with radius ρ and orientation θ is obtained by comput-

ing:

gρ,θ = i ∗ hρ,θ (1)

where ∗ denotes convolution and gρ,θ is the resulting filtered im-

age. The GEF hρ,θ is basically a complex 2D sinusoid whose ori-

entation and frequency are given by (θ, ρ) modulated by a Gaus-
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sian envelope. For computational complexity reasons, Gabor fil-

tering is usually performed in the FFT domain since it then comes

down to a simple multiplication with the following filter:

Hρ,θ(u, v) = exp

[
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where σρ and σθ characterize the bandwidth of the GEF. In other

terms, Hρ,θ is a 2D Gaussian that is shifted ρ frequency units

along the frequency u-axis and rotated by an angle θ. Thus, it

acts as a bandpass filter with a center frequency controlled by ρ
and θ and a bandwidth regulated by σρ and σθ . To obtain real val-

ued features gρ,θ in the spatial domain, GEFs are paired as follows

Hρ,θ ← Hρ,θ + Hρ,θ+π .

The idea is then to build a filter bank of such GEF pairs for M
frequencies and N orientations to obtain a Gabor decomposition

of the image. So, for each pixel position p = (x, y) in the image

i, the response of the different filters can be collected in a single

column vector g(i,p) = {gρi,j ,θi,j
(i,p)} with 1 ≤ i ≤ M and

1 ≤ j ≤ N . This vector can be regarded as the local power

spectrum of the image and thus be used to characterize the neigh-

borhood. Based on previous work [9], the different parameters of

the GEF pairs are computed as follows:

ρi,j = ρmin + b
(s+ 1)si−1 − 2

s− 1
(3)

σρi,j
= tbsi−1

(4)
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2N
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2
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sM − 1

)

(7)

The whole filter bank is specified by the 6 parametersM ,N , ρmin,

ρmax, s and t. The first two parameters determine the number of

orientations and frequencies in the filter bank. The next two ones

specify the bandwidth in which the filters are bound. The param-

eter s controls how much the radial bandwidth increases when the

radius increases. Typically when it is set to 2, frequency bands are

distributed in octave steps with a frequency bandwidth which dou-

bles at each step. Finally, the parameter t sets the value at which

neighboring filters intersect. For instance, with t = 1, they cross

at equal value 1/e along their principal axis.

3. SIGNAL COHERENT WATERMARKS

For each signal block, BRA look for a linear combination of neigh-

boring blocks which results in a block which is similar enough to

the current block so that a substitution does not introduce strong

visual artifacts [5]. Today, most watermarking systems are de-

feated by such attacks since nothing specific is done to ensure that

the embedded watermark is coherent with the self-similarities of

the host signal. Alternative watermark generation algorithms have

consequently to be designed to obtain such signal coherent wa-

termarks. An intuitive specification is that similar signal blocks

should carry similar watermarks or alternatively that pixels with

similar neighborhood should carry watermark samples with close

values. In Subsection 3.1, it will be shown that such watermarks

can be theoretically obtained if watermark samples are considered

as the output of a linear form in the Gabor space. A discussion is

then conducted in Subsection 3.2 to get a practical implementation

of this approach.

3.1. Linear Form in Gabor Space

From a very low-level perspective, generating a digital watermark

can be defined as associating a watermark value w(i,p) to each

pixel location in the image. Then, if the watermark is required to

be immune against BRA, the following property should be veri-

fied:

g(i,p0) ≈
∑

k

λkg(i,pk)⇒ w(i,p0) ≈
∑

k

λkw(i,pk) (8)

In other terms, if at a given position, the local neighborhood is sim-

ilar to a linear combination of neighborhoods at other locations,

then the watermark sample should be close to the linear combi-

nation (with the same mixing coefficients λk) of the watermark

samples at these locations. In order to obtain this property, one

can write w = ϕ ◦ g where ϕ(.) is a linear form in the MN di-

mensional Gabor space G. Subsequently, it is sufficient to choose

an orthonormalized basis B = {bl} of the Gabor space and the

values ξl = ϕ(bl) to completely define the linear form ϕ(.). This

is where some secret can be injected into the framework i.e. the

basis and its associated values can be pseudo-randomly generated

using a secret key K. Furthermore it should be noted that one can

decide to have less thanMN basis vectors if other constraints have

to be imposed. For instance, it happens that neighborhoods which

are the same modulo a small set of geometrical operations, e.g. 8

isometries and scaling by a factor 2, are required to carry the same

watermark samples to achieve robustness [12]. The dimension of

the vector space spanned by the bl’s will be denoted D ≤ MN .

Now, if the values taken by the linear form on the unit sphere U
of this subspace are considered, the following probability density

function is obtained [13]:

fϕ|U (w) =
1

Ξ
√
π

Γ
(

D
2

)

Γ
(
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2

)

[

1−
(w

Ξ

)2
]

D−3

2

(9)

where Ξ2 =
∑D

l=1
ξ2l and Γ(.) denotes the Gamma function.

When D grows large, this tends towards a Gaussian distribution

with zero mean and standard deviation Ξ/
√
D. Thus if the ξl’s are

chosen to have zero mean and unit variance, this ensures that the

obtained watermark is equivalent to a Gaussian watermark with

zero mean and unit variance multiplied by some local scaling fac-

tors, which can be regarded as perceptual shaping. As a matter of

fact, by linearity, w(i,p) = ‖g(i,p)‖.ϕ
(

g(i,p)/‖g(i,p)‖
)

. The

greater the norm ‖g(i,p)‖ is, the more textured the neighborhood

is and the more amplified is the normally distributed watermark

sample ϕ(g(i,p)/‖g(i,p)‖). On the other hand, in smooth areas,

‖g(i,p)‖ is small and the watermark is attenuated.

3.2. Practical Implementation

When M and N grow, more and more Gabor responses gρi,j ,θi,j

need to be computed which can rapidly get prohibitive. A practical

implementation of the presented watermark generation algorithm

has consequently been investigated. To obtain the watermark sam-

ple w(i,p) at a given position, the local Gabor power spectrum

I-966



g(i,p) is first projected onto the basis B. Then, the inner product

between the obtained vector and the column vector ξ containing

the ξl’s is computed. This can be written:

w(i,p) =
(

b
T
g(i,p)

)T

ξ = g(i,p)Tψ (10)

where .T denotes the transposition operation, b is a matrix whose

columns are the bl’s and ψ = bξ. It should be noted that the

whole secret of the algorithm is contained in the MN values ψi,j

of the column vector ψ. Now, looking at Equation (10), the water-

mark can be written as:

w =

M
∑

i=1

N
∑

j=1

ψi,jgρi,j ,θi,j
(11)

In other terms, the watermark is a linear combination of the Gabor

responses gρi,j ,θi,j
. Since the Fourier transform is linear, the same

property is also valid in the frequency domain:

W =

M
∑

i=1

N
∑

j=1

ψi,jGρi,j ,θi,j

=

( M
∑

i=1

N
∑

j=1

ψi,jHρi,j ,θi,j

)

I = HI (12)

where I is the Fourier transform of the input image i. Thus, the

watermark can be generated in one row in the frequency domain by

computing H which significantly reduces the computational cost.

4. EXPERIMENTS

The major claim of this paper is that a watermark whose samples

have inherited the same linear relationships as the Gabor-defined

neighborhoods of the host signal should not be affected by BRA.

It is thus necessary to check whether or not the proposed water-

mark is degraded by such attacks in comparison with more current

watermarks e.g. additive SS watermarks. To this end, large-scale

experiments have been conducted. The experimental protocol is

detailed in Subsection 4.1 and the results are presented in Subsec-

tion 4.2.

4.1. Protocol

A watermark with zero mean and unit variance wK(i) is embed-

ded in the input image i to obtain a watermarked image iw accord-

ing to the following equation:

iw = i + αwK(i) (13)

where K is a secret key used to generate the watermark and α an

embedding strength equal to 3 so that the embedding process re-

sults in a distortion about 38.5 dB in terms of Peak Signal to Noise

Ratio (PSNR). For SS watermarking, the embedded watermark is

completely independent of the host content (wK(i) = wK ). It

is pseudo-randomly generated using the secret key K and is nor-

mally distributed. On the other hand, the signal coherent water-

mark presented in Section 3 is related with the host signal i through

the linear form imposed on the Gabor-defined neighborhoods. In

the reported experiments, the Gabor filter bank has been config-

ured as follows: N = 16, ρmin = 0.01, ρmax = 0.45, s = 2 and

t = 1.5. The number of frequencies M has remained variable.
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Fig. 1. Comparison of the impact of BRA with SS and Gabor-

defined coherent watermarks: whereas the SS watermark is

washed out when the attacking strength increases, the coherent wa-

termark survives.

The watermarked image iw is then attacked using the latest

version of BRA [5]. For each input signal block, a search win-

dow is defined and a codebook is built using the blocks within this

window. Principal Component Analysis (PCA) is then performed

and the obtained eigenvectors are sorted according to their eigen-

values. Finally, the replacement block is obtained by considering

more or less eigenvectors (or eigenblocks) so that the distortion

with the original signal block is as close as possible to a target

value τtarget. In the experiments, 8 × 8 blocks have been consid-

ered with an overlap of 4 pixels and the search window size has

been set to 64 × 64. The attacking strength τtarget has remained

variable.

On the detector side, the only concern is to know whether

or not the embedded watermark has survived. Non-blind detec-

tion can consequently be considered and the residual correlation is

computed as follows:

d(i, ı̃w) = (̃ıw − i) ·wK (̃ıw) (14)

where ı̃w is the attacked image and · denotes the linear correlation

operation. To anticipate future blind detection, the watermark is

generated considering the attacked image instead of the original

image. This has no impact for SS since it is content independent,

but this may have one with signal coherent watermarks. The resid-

ual correlation should be equal to α if the watermark has survived

while it should drop down to 0 when the watermark signal has been

completely washed out. As a result, the presence of the watermark

can be asserted by comparing the residual correlation d(i, ı̃w) with

a detection score τdetect which can be set to α/2 for equal false

positive and false negative probabilities.

4.2. Experimental Results

A database of 500 images of size 512 × 512 has been considered

for experiments. It contains snapshots, synthetic images, drawings

and cartoons. All the image are first watermarked using either SS

or signal coherent watermarks with different values for M . Then,
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each watermarked image is submitted to BRA with varying attack-

ing strength τtarget to obtain a distortion vs. residual correlation

curve. Finally, all the curves associated with a given watermark-

ing method are averaged to depict the statistical behavior of this

scheme against BRA. Those results have been gathered in Fig-

ure 1. It should be reminded that the goal of the attacker is to de-

crease the residual correlation while maintaining the image qual-

ity. First of all, the proposed signal coherent watermark clearly

outperforms additive SS watermarking when BRA are considered.

Indeed, the residual correlation never goes below 2.5 with Gabor

watermarks while it already drops below the detection threshold

τdetect = 1.5 for a distortion of 40 dB when SS watermarks are

considered. Experiments have also been done to further investigate

the influence of the number of GEF pairs in the filter bank on the

resilience of the embedded watermark against BRA. To this end,

the same benchmark has been run for Gabor watermarks corre-

sponding to different value ofM (2, 4, 8, 16, and 32). Even if more

images should be considered to allow a pertinent comparison, one

can already assert that it has no drastic impact on the immunity

of the watermark against BRA. Nevertheless, it is important to in-

crease the number of GEF pairs so that watermarks generated with

different secret keys K are as little correlated as possible and thus

decrease the false positive probability. Of course, increasing the

number of GEF pairs also raises the computational load. Future

work will consequently investigated how to obtain a reasonable

trade-off.

5. CONCLUSION

After robustness, security evaluation is now growing a key issue in

the watermarking community. Indeed, most of the original interest

from the industry has come from the potential use of digital water-

marking to ensure IP protection. In such applications, customers

are likely to be willing to remove the embedded watermark which

they can see as a disturbing signal since it reduces the potential us-

ages of protected data. As a result, researchers have to anticipate

possible hostile behaviors and, in this perspective, BRA are recog-

nized to be among the most critical attacks against watermarking

systems today. Typically, these attacks exploit the fact that similar

blocks do not carry similar watermark to confuse the watermark

detector. In this paper, a novel watermarking strategy has been

introduced which has been shown to significantly enhance the sur-

vival of the embedded watermark against such attacks. The basic

idea consists in removing the weak link exploited by BRA by en-

suring that the embedded watermark inherits the self-similarities

of the host signal. To this end, the neighborhood is characterized

for each pixel using Gabor filters and a linear form is defined in

the resulting Gabor space to obtain a signal coherent watermark.

From a more general points of view, this can be seen as some

kind of informed watermarking [1, 14]. Digital watermarking can

indeed be seen as moving a point in a high dimentional media

space to a nearby location i.e. introducing a small displacement

in a random direction. The introduced framework only stipulates

that the host signal self-similarities have to be considered to resist

BRA and that, in this case, some of the possible directions are now

prohibited. Future work will investigate how to properly configure

the Gabor filter bank and how to design a blind detector with such

signal coherent watermarks i.e. a detector which does not require

the original image i to assert whether a watermark is present or

not. Furthermore, looking at Equation (12) more closely, it can be

noted that the watermark generation process can be seen as a mul-

tiplication in the frequency domain. Thus, it may be interesting

to revisit the results previously obtained with such a watermarking

strategy under this new light [15, 16].
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