
Universal variable-length data compression
of binary sources using fountain codes

Giuseppe Ceire Sliloino Sliamei Amin Sliokrollahi Sergio Verdil

giuseppe.cairemeurecom.fr, sshlomomee.technion.ac.il,amin.shakrollahimepfl.ch,verdumprinceton.edu
Institut Eurecom Technion EPFL Princeton University

Abstract - T h i s paper proposes a universal
variable-length Lossless compression a lgor i thm based
o n fountain codes. The compressor conca tena tes
t h e Burrows-Wheeler block so r t ing t ransform (B W T)
w i t h a fountain encoder , together w i t h the closed-
loop i terat ive doping a lgo r i thm. T h e decompressor
uses a Belief P r o p a g a t i o n a lgor i thm i n conjunct ion
w i t h the i t e r a t ive d o p i n g a lgor i thm and t h e inverse
BWT. Linear-time compression/decompression com-
plexi ty and compe t i t i ve per formance w i t h respect to
state-of-the-art compression algori thms are achieved.

I. INTRODljCTlON

It is known that linear fixed-length encoding can achieve
for asymptotically large blocklength the minimum compres-
sion rate for memoryless sources (11 and for arbitrary (not
necessarily statiunary/ergodic) sources [2j.

After initial attempts [3 , 4, 51 t o construct linear lossless
codes were nonuniversal, l in i i td to memoryless sources and
failed to reach competitive performance with standard data
compression algorithms, the interest in linear da t a compres-
sion waned. Recently [fi, 7, 81 came up with a universal loss-
less data compression algorithm based on irregular low-density
parity-check codes which has linear encoding and decoding
complexity, can exploit source memory and in the experiments
for binary sources presented in [6, 7: 81 showed competitive
performance with respect t o standard compressors such as
gzip, PPM and bzip.

The scheme of [6, 7, 81 was based on the important clas
of sparsegraph error correcting codes called low-density par-
ity check (LDPC) codes. The block-sorting transform (or
Burrows-Wheeler transform (BWT)) [9] is a one-twone trans-
formation, which performs the following operation: it gener-
ates all cyclic shifts of the given data string and sorts them
lexicographically. The la3t column of the resulting matrix is
the BWT output from which the original data string can be
recovered. knowing the BWT index which is the location of
the original sequence in the matrix. The BWT shifts redun-
dancy in the memory to redundancy in the marginal distribu-
tions. The redundancy in the marginal distributions is then
much easier to exploit a t the decoder as the decoding com-
plexity is independent of the complexity of the source model
(in particular, the number of states for Markov sources). The
output of the BWT (as the blocklength grows) is asymptoti-
cally piecewise i.i.d. for stationary ergodic tree sources. The
length, location, and distribution of the i i d . segments depend
on the statistics of the source. The existing universal BWT-
based methods for data compression generally hinge on the
idea of compression for a memoryless source with an adaptive
procedure that learns implicitly the local distribution of the
piecewise i.i.d. segments, while forgetting the effect of distant
symbols.

In the da t a compression algorithm of [6: 71, the compression
is carried out by multiplication of the Burrows-Wheeler Trans-
form of the snurce string with the parity-check matrix of an
error correcting code. Of particular interest are LDPC coda
since the belief propagation (BP) decoder is able to incorpo-
rate the timevarying marginals a t the output of the BWT
in a very natural way. The nonidentical marginals produced
a t the output of the BWT have a synergistic effect with the
BP algorithm which is able to iteratively exploit imbalances
in the reliability of variable nodes. The universal implementa-
tion of the algorithm where the encoder identifies the source
segmentation and describes it t o the decompressor is discussed
in [a].

An important ingredient in the compression scheme of
[G : 7, 81 is the ability to do decompression at the compres
SOT. This enehles to tune the choice of the codebaok to the
source realization and more importantly it enables the use of
the Closed-Loup Iterative Doping (CLID) algorithm of [ti: 21.
This is a n efficient algorithm which enables zerwerror variable-
length data compression with performance which is quite com-
petitive with that of standard data compression algorithms.

In this paper, instead of adopting irregular low-density par-
ity check codes of a given rate approximately matched to the
source we adopt B different appramh based on rateless foun-
tain codes. This class of codes turns out to be more natural for
variable-lengtb data compression applications than standard
black codes and achieves in general comparable performance
to the LDPC-based scheme of 16, 7, 81.

The rest of the paper is organized as follows. Section I1
reviews the main features of fountain codes for channel cod-
ing. Section 111 gives a brief summary of the principle of
belief propagation decoding which is common to both chan-
nel and source decoding. Our scheme for data compression
with fountain codes is explained in detail in Section IV in the
setting of nonuniversal compression of binary sources. For fur-
ther background on linear codes far data compression and the
closed-loop iterative doping algorithm the reader is referred to
[2]. The modelling module necessary for universal application
is discussed in Section V. Section VI shows several experi-
ments and comparisons of redundancy with off-the-shelf data
compression algorithms run with synthetic sources. Through-
out the discussion we limit ourselves to binary sources. The
generalization to nonbinary alphabets is treated in [lo].

11. FOUNTAIN CODES FOR CHANNEL CODING
Fountain codes [ll] form a new class of sparse-graph codes
designed for protection of data against noise in environments
where the noise level is not known a-priori. To achieve thisl a
fountain code produces a potentially limitless stream of out-
put symbols for a given vector of input symbols. In practical
applications, each output symbol is a linear function of the
input symbols, and the output symbols are generated inde-
pendently and randomly, according to a distribution which is

0-7803-8720- 1/04/$20.00 02004 IEEE 123

http://giuseppe.cairemeurecom.fr
http://sshlomomee.technion.ac.il,amin.shakrollahimepfl.ch,verdumprinceton.edu

chosen by the designer. The sequence of linear combinations
of input symbols is known a t the drcodcr. Far example, they
can be generated by pseudorsndom generators with identical
seeds.

Unlike traditional codes for which the code performance
is measured in terms of the error rate as a function of the
signal to noise ratio, the performance of fountain codes with
respect to a given decoding algorithm is measured in terms
of the error rate a a function of the reception ouerhead. The
overhead of the decoding algorithm for a fountain code over
a given communication channel is measured as the f r x t i o n
of additional output symbols rlecessary to achieve the desired
residual error rate. Here, the phrase "additional" is meant
to be with respect to the Shannon limit of the underlying
channel.

The decoding process for fountain codes is as follows: the
receiver collects output symbols and estimatrj for each re.
ceived output symbol the amount of information in that sym-
bol. For example, when output symbols are bits, this
of information can be obtained from the log.likelihood ratio
(LLR) of the received hit. If this ratio is A, then tile empiri.
cal mutual information between the information syn,bol and
its LLR equals 1 - h (p) , where p = 1/(1 + exp(A)). The de-
coder stops collecting output bits as S O O ~ as the accumulated
information carried hy the observed channel outputs exceeds
(l+w)k l where w is the overhevd associated with the foulltain
code, and IC is the number of input symbols. Then the decoder
uses its BP decoding algorithm t o re~over the input symboh
from the information contained in the output symbols.

If the amount of information in the received output sym.
bola is unknown but the channel is known to be memory.
less stationary with capacity C(A) parameterized in the single
output LLR A, then decoding of fountain codes call be
plished as follows: the decoder starts with an optimistic guess
A1 of the channel parameter, collects an appropriate number
of output symbols nL such that k l n l = c(&) - 6,
6 > 0 is some positive rate margin that enforces successful de-
coding with high probability, and applies B P decoding based
an the guess A,. In c a e the BP decoder is unmccessful, a
predetermined number of additional output symbols is col.
lected such that the total number of output symbols is nz,
and the BP decoding is applied to the new graph using LLR
A 1 = C-'(k/nz +a) . In case the BP decoder is unsuccessful,
the same process is repeated using n3 > n2 output symbols
and so on, until decoding is successful. In practice, instead of
resetting the BP decoder a t each new decoding attempt and
especially if the initial guess XI is likely to be not far from
the true channel parameter, it might be more convenient t o
keep the same BP decoder running while incorporating the
additional collected output symbols.

Discovered by Michael Luby 1111, LT-codes are one of the
tirst classes of efficient fountain codes for the erasure chan-
ne]. An extension of this class of codes is the class of Raptor
codes 1131. These classes of codes are very well suited for
salving the compression problem, because the compression al-
gorithm translates to B channel coding problem for a discrete
memoryless channel with time-varying transition probability
lndtrix which depends on the source. In applications, it is
undesirable to tune the choice of tho code to the sequence of
transition probabilities, zm in universal applications they are
not known beforehand. In this case a fountain code is more
amenable for universal implementation than other classes of

efficient channel codes, such as irregular LDPC codes [22] ,
mainly because a single code can be used regardless of the
source rate.

For ease of exposition we concentrate on binary fountain
cod-. Let k be a positive integer, and let V be a distribution
on F,". A Fountain Code ensemble with parameters (k , D)
him as its domein the space F: of binary strings of length
k , and zm its target space the set of all sequences over F z ,
denoted by F?. Forrnally, a Fountain Code ensemble with
parameters (k ; V) is a linear map F," - FF represented by
an cc x k matrix where rows are chosen independently with
identical distribution 'D over Fk. The blocklength of a Foun-
tain Code is potentidly infinite, but in our data compression
applications we will solely consider truncated Fountain Codes
with a number of coordinates which is tailored to the source
redizdtion.

The symbols produced by a Fnuntain Code are called output
symbols, and the k symbols from which these output symbols
are calculated are called input symbols. The input and output
symbols could be elements of Fz, or more generally the ele-
ments of any finite dimensional vector space over F a . In this
Paper, we are primarily concerned with Fountain Codes aver
the field Fir in which symbols are bits.

A special class of Fountain Codes is furnished by LT-Codes
Ill]. In thk c l a s , the distribution 2) has a special form de-
scribed in the following. Let (a,, . . . ,CL) be a distribution on
(1,. . . , k} So that 0, denotes the probability that the value i
iS chosen. Often we will denote this distribution by its gen.
erator polynomial n (x) = Qx'. The distribution n (x)
induces a distribution on Fk in the following way: For any
vector U E F! the probability of U is %/(:), where w is the
Hamming Weight of U. Abusing notation, we will denote this
distribution in the following by n (x) again. An LT-code is a
Fountain code with Parameters (k, n (x)) .

The decoding graph of length n of a fountain code with
parameters (k , n (x)) is a bipartite graph with k nodes on one
side (called input nodes, corresponding to the input symbols)
and n nodes on the other side (called output nodes). The
output nodes correspond t o n output symbols collected a t the
output of the channel. The decoding graph is the Tanner
gTaPh of the linear encoder - IF," obtained by restricting
the fountain encoder mapping to those n components actually
observed at the output.

A raptor code [I31 berfornls a pre-coding operation with a
linear code (e.g., an LDPC code) prior to using an LT-code.
Without a pre-coder the average degree of an LT-coder needs
to grow at least logarithmically in the length of the input
to guarantee a small error probability, since otherwise there
would exist input symbols that are not present in any of the
linear equations generating the output symbols. The pre-code
bwers the error floor present in an LT-code with small average
degree.

111. BELIEF PROPAGATION DECODING
In this section we give B description of the BP algorithm

that is used in the decoding process of LT codes. The algo-
rithm proceeds in rounds. In every round messages are passed
from input nodes to output nodes: and then from output nodes
back to input nodes. The message sent from the input node L

t o the output node w in the eth round of the algorithm is de-
noted by m!:?, and similarly the message sent from an output
node w to an input node L is denoted by &!,. These messages

I24

are scalers in E := R U { i m } . Wc will perform additions in
this set according to the following rules: a + m = m for all
a # -W. and a - m = -m for all a # m. The v d w s of m-m
and -m + m are undpfined. Moreover, tanh(m/2) := 1: and
tanh(-m/Z) := -1.

Every value Y received from the channel has a log-
likelihood ratio defined as In(Pr[Y = O]/Pr[Y = I]).

For every oiitput node w , we denote by Z, the correspond-
ing log-likelihwd ratio.

In round 0 of the BP algorithm the output nodes send to
all their adjacent inpur. nodes the value 0. Thereafter, the
following update rules are used to obtain the messages passed
a t later rounds:

where the product is over all input nodes adjacent to w other
than L, and the sum is over all output nodes adjacent to L

other than w , and e 2 0.
After running the BP-algorithm for m rounds, the log-

likelihood of each input symbol associated to node L can be
calculated as the sum ~ u & ~ l , where the sum is over all the
output nodes w adjacent to 1. In cases where the pre-code of
the Raptor code is decoded separately from its LT-code, one
may gather the log-likelihood of the input symbols, and run
a decoding algorithm for the pre-code (which may itself be
the BP algorithm). In that case, the prior log-likelihoods of
the inputs are set to be e q i d to the calculated log-likelihoods
according to (1).

In data compression applications, the CLID algorithm in-
troduced in [til rims BP at the encoder and supplies to the
decoder the value of the lowest reliability symbol a t certain
iterations until successful decoding is achieved. Since the de-
coder runs an identical copy of the BP iterations, it knows
the identity of the lowest reliability symbol, without the need
to communicate this information explicitly. The symbols s u p
plied by the CLID algorithm are referred to z, doped symbols.

IV. DATA COMPRESS~ON WITH FOUNTAIN CODES
We calculate from the input symbols (XI). . . , x k) a vector

of intermediate symbols (yl,. . . , yk) through a linear invertible
k x k matrix G:

(V I , . .. , y ~) ~ = G - * (x L , . . . , ~ k) ~ (3)

Next, using the intermediate symbols we calculate m nut-
put symbols (z:*+I,. . . I ~ i r + ~) according to a distribution
n (x) . ' These m output symbols, together with the doped
symbols obtained from the closed-loop iterative doping algw
rithm constitute the output of the compressor; hence, their
total number should be as close as possible to kh(p) .

The Tanner graph on which the BP is run is U. bipartite
graph with k i n t e m e d i a t e nodes (corresponding to the inter-
mediate symbols) on one side and k input and m output nodes,
corresponding to the k input and m output symbols, respec-
tively) on the other side. The invertible matrix G is chosen

'The choice of 9(z) is crucial for performance and its specific
exprasion i s given at the end of the section.

as a random realization so that the degree distribution of the
input nodes is n (x) . In this way the degree distribution
of both the input and output nudes is equal t o Q (x) . Notice
that the resulting graph can be interpreted m the decoding
graph of a (k , n (x)) LT code with input symbols (yl, . . . , l / k)

and output symboLs (XI,. . . ,xk+,,,), observed through a non-
stationary BSC with transition probability p over the first k
components and 0 over the second m components. The initial
reliabilities (absolute d u e of the initial LLR5) of (yt,. . . ,yk),
(xi , . . . , Z k) and (xir+l,. . . , Z k +) are 0, I log((1 - p) / p) l and
+m, respectively.

Even though the matrix G is sparse, its inverse is gen-
erally dense. This has two consequences: the intermediate
symbols behave like random coin Hips, and the computation
of (3) is, in principle, quildratic in k . In order to compute
(3) i n linear time, G should be such that the linear system
G(y1,. . _ = (X I , .. . , ~ k) ~ can be solved by direct elim-
ination of one unknown a t a time. Equivalently, the BEC
message-passing decoding algorithm applied to the Tanner
graph of the parity equation G(y1,. . . , y k) * + (x ~ , . . . , ~ r) ~ =
0 must terminate (i.e., it recovers all intermediate symbols

We summarize the compression and decompression steps as
(Yl,. .. ,YC)).

fdows:

1. After block sorting the original k-data vector, we obtain
a block of symbols (X I , . . . , X I) .

2. An intermediate block (VI, M , . . . yk) of symbols is cal-
culated by (3) (in practice, this is acconrplished via
message-phssing).

3. A vector of m symbols (xk+,, . . . ,zk+,,,) is generated
from (y,, . . . , yk) through encoding with an LT-code
with parameters (k,R(x)). Together with the doped
bits generated as indicated below, (X k + l , . . . , zx+,,,)
forms the payload of the compressed data.

4. A bipartite graph is set up between the nodes corre-
sponding to (VI, ... , y x) . and the nodes corresponding
to (XI , . . . , X i ; + ,) . The edges in this graph are defined
z, fallows: far all i, there is an edge from x, t o all tlie
bits among (yl:. . . , y k) of which xi is the addition.

5. The BP algorithm is applied to the graph created in the
previous step. The objective of this BP algorithm is to
decode the symbols (SI,. . . , yk) using the full knowl-
edge of the symbols (xk+i ,I*+-) and the a priori
marginal source probabilities (P (x , = 1) = p i : i =
1,. . . , k}. Far i = 1,. . , k; the LLR of the bit x, (un-
available to the decoder) is set to lag((1 - p ;) / p ,) . The
marginal probabilities pi are either known (in a non-
universal setting) or estimated from the snurce sequence
itself by the source modeler illustrated in Section V.
The nodes corresponding to (yl , . . . , y k) have initially
zero reliability.

6 . During the BP-algorithm. the CLID algorithm of [6, 21
is applied. In every e-th round of the iteration the inter-
mediale bit with the smallest reliability is marked,
included in the payloitd, and its log-likelihood is set to
fm or -m depending on whether its value is 0 or 1.

'For example, G can be constructed row-by-row, such that every
TOW is sumpled from Ll(s) snhject to tho constraint that all the rows
created so far are linearly independent.

125

The combined BP-dccoding with iterative doping is ~011-

tinued until the intermediate bits satisfy all the parity
check equations of the LT code.

This distribution was optimized for the binary erasure cham
ne1 [Ki], but it produces surprisingly good results for binary
symmetric channels [li, 181.

7 . The payload output by the compressor consists of the
bits (xi+l,.. , ,z~+,,,), followed by the values of the
dooed intermediate bits.

V. MODELLING AND UNIVERSALITY
In this section we consider a universal version of our da ta

The choice of the of parity checks is driven by compression scheme based on modelling the source statistical
dependencies 'IS a tree'

values on a given q-ary alphabet A and is generated by a sta-
tionary ergodic tree S O U I C ~ with S states. Then, the output of
the BWT, denoted in the following hY 5 = (213 ...,:k)
verges, IC - m, to a piecewise i.i.d. sequence [19]. This
means that there exist S' + 1 tramition points, denoted by

the source entropy I I (S) .

number of doped symbols to
for SomP rate
code, the
it yields a "~'y

rate m/k is too close or above the
due to the fact that, as one may expect, the CLID algorithm * = tl t 2 < _ ' ' - tS'+l = IC f that Partition

cover the SOUrce sequence with I, but is not a good
encoding in itself. Therefore, in order to have good
compression performance we should choose m = k (H (S) +a).

and the higher the resiliencc against channel error and/or era-
sures. Thus B tradeotf of average vs variance in redundancy is
possible by tuning the degree of backoff from entropy. If the
entropy of the source is now known: we compute m based on The nrlmber of segments s' may differ from the number of
the empirical entropy of the individual Source sequence esti- s ,,f the tree but, for sutficiently large k! we
mated by the universal Source modeler. have that S' = S and that Pj(a) is close to the true tree

The cornpressor performance, and in particular the out- probability distribution conditioned on state j.
put length variance, can be improved by trying several ran- consists of mudelling the source tree struc-
dom realizations of the LT code for a given source sequence ture and estimating its State probability by processing the
and choose the one for which the number of doped symbols BWT sequence. Since the compressor mts on by
is smallest. Using LT codes makes this very simple in prac- treating it as
lice. In fact, any encoding matrix realization can be identified probabilities, goal is to find the most piecewise
by a single integer number, seed of a pseudo-random number i.i.d. description of Z. G ~ ~ ~ ~ ~ I I ~ speaking, a soII~ce statist.ics
generator, that can be communicated to the decompressor a t M is given by the number ,,f StateS (or segments) S',
the cost of a constant (i.e., independent of the blocklength k) by the distinct transition points [t2, . . . , ts.) and by the model
number of additional bits. segment distributions {Qj(a) : j = I , . . . ,S'}. The cost of a

The decompressor also proceeds in several steps which ,,,,,del M to represent Z is measured by t h e total number of
closely mimic the compression steps using the closed-loop it- bits
erative doping algorithm:

For not too-small blocklength
it can be observed that the CLID algorithm a snlall Suppose that the murce sequence = (X I

if m/k 2 H (S) + 6,
6, that generally depends on the LT

statistics and orl the blocklength IC, while
nun,ber of doped symbols if the coding

is entropy.

is jnst a "perturbation" ,,f the ~p decoder to force it to re. into segments . . , -11 for j = 1, . . . , s'. The empir-
ical marginal Rrobebility distribution of symbols in segment
j is given by p,(a) = ~Vt(a)/(t3+1 ~ t,), where we define the
segment symbol counts

The longer m is, the lower the number of required doped bits, %+,--I

N,(a) = l{Zi = a} (4)
i d j

our

piecewise i,i,d, sequence with given

to describe a, given by

1
S

c(S, M) = S'(log, IC+(q-l)b)+x N,(a) log, - 1. Using (xh+~,. . . , ~k+,,,) and the marked intermediate
symbols &,, all the intermediate bits (yl,. . . , yk) are QM ('I

> = I &A reconstructed using a mirror image of the iterations of
the BP algorithm used at the compressor.

2. Applying the encoder for the raptor code to the interme-
diate bits (yl,. . . , yr) the bits (X I , . . . , Zk) are obtained.

3. An inverse block sorting transform recovers the original

where we spend log, k bits to encode the transition points3;
(q - l) b bits to encode each nominal segment distribution (see
later for details), and

1
data sequence. 1 lV, (a) log2 Q30

aE.4 In instances where the d a t a compression algorithm is run
in a channel with a low rate of erasures it is still possible to bits to encode the j t h segment symbols. Notice that this
run the CLID algorithm using the Quenched Belief Propaga- length is an estimate of the output length of a Shannon code
tion algorithm explained in [16]. In general, when the rate of for encoding the symbols in segment j using the model distri-
erasures is not low it is preferable not to use CLID and use bution Qj(a). We take this as an a t i m a t e of the cost incurred
instead a standard Raptor code for compression together with by the fountain code compressor.
a B P decompressor that takes into account the probability of In order to find the most efficient piecewise i.i.d. source
the data. model, we fallow the segment merging procedure explained

The choice of the output distribution n (x) is crucial for the in [21] with a different segment cost function. The BWT
performance of the algorithm. The experiments reported in output and the original source sequence are related by
this paper are all based on the following degree distribution:

3We have 5" - 1 transition points plus logz k hits to encode the
0.008x + 0.494~' + 0 . 1 6 6 ~ ~ + 0 .0 '73~~ + 0.083x5+ E W T indes. necessary to perform inverse BWT at the decompres-
0 . 0 5 6 ~ ~ + 0.037~' + 0.056~" + 0 . 0 2 5 ~ ~ ~ + 0.003z6%'.

n(z) =

126

a data-dependent pcmmutation r, such that xr(;) = 4.
Hence, the depth-d context of each symbol 5; is obtained as
(zX(+-d;.. . , z ~ (+ ~) . By exploiting this fact, it is possiblc
to partition 5 into segments of symbols with common context
for a certain maximum depth d,,,, that is a design parame-
ter of the algorithm. We identify segments by their context.
Hence, the depth-d,,, segments are arranged as leaves of a
q-ary tree where the root is the whole sequence Z (segment
of depth 0) and where, for 0 < d < d,.,, the segment with
context sf = (s d,.SI) has a t most q children segments with
contexts (a,$), for a E A.

Let the empirical marginal probability distrihritiun of sym-
bols in segment 5;' be denoted hy P(a1sf) = N(alsf)/L(sf),
where we define the segment symbol counts

Iv(ajs:) = I{% =a} ((9
;e scgmont

and where L(s$ is the segment length. The cast of directly
encoding segment sf is given by

-
where Q(als;() is a quantized version of P(aIsf) using (q - l) b
hits. The segment merging algorithm is initialized hy associ-
ating to each depth-d,, segment its cost c (sp-). Then, far
depth d = d,,,,, - 1 to d = 0, the cost associated to segment
sf is given hy the minimum bctween the sum of the costs of
its children segnients and the cost of representing it directly.
The children segments are merged and their corresponding
branches in the segment tree are pruned if

C c (a , s ?) > C(S?) (8)
-til

Otherwise, the branches are kept in the tree
The algorithm terminates when it is not possible to prune

the tree further. The leaves of the pruned tree correspond to
the segments of the optimal piecewise i.i.d. model M for 2
(subject to the tree source assumption of the original source).

As envisioned in [6] (and implemented in state-of-theart
BWT-based compressors) it is convenient to pre-process the
BWT output with the move-to-front algorithm when the
source has a large number of states S relatively to the black-
length k, as is often the case in practice. The move-to-front
transformation replaces each symbol 6 = a with the number
of distinct symbols appeared in Z since the last appearance
of a. Since the symbols at the input of the move-to-front
algorithm are independent (or weakly dependent) the mast
probable symbol in the transformed sequence is 0, the next
most probable is 1 and so on. The beneficial effect of move-
to-front on the segment merging algorithm stems from the fact
that after move-twfront the empirical distributions of the seg-
ments tend to he more similar since move-to-front implicitly
implements B symbol permutation that arranges probabilities
in decreasing order. Therefore, the merging algorithm is mure
likely to merge segments after the move-tn-front operation.
If the number of states is smell relative to the hlocklength,
then the segments are long enough and it is preferable not t o
merge segments even if their distributions are similar. Thus
in those caxs, move-to-front may actually incur in a small
performance degradation.

VI. EXPERIMENTS
In order t o compare the universal version of our scheme

with tht: leading data compression methods such as gzip, bzip
and PPM we will use synthetic Markov sources whose entropy
is easily computable YO that we can gauge how far the vaii-
nus methods are from the Shannon limit. We are particularly
interested in the regime of moderate length. Not only the
gaps from the Shannon limit would vanish (in terms of dif-
ference between rate and entropy) for long lengths, hut as we
mentioned above the new proposed methods are particiiliirly
useful for adaptation to source-channel schemes in data trans-
mission applications where relatively short data packets are of
interest.

Instead of experimenting with a given Markov sourcel we
generate an ensemble of binary Markov sorirces whose tran-
sition probabilities are chosen a t random. The number of
states is equally likely to be I> 2, 4, 8: 16, 82, and 64. A non-
ergodic source ensemble is obtained by generating indepen-
dently the memory length (binary logarithm of the number of
states), and then conditional distributions are also generated
randomly producing sources with entropy ranging from 0.115
to 0.75 bit/symbol. The same ensemble was used to test the
LDPC-based scheme in [XI. Figure 1 shows a histogram of
the absolute redundancy of the proposed methud with PPM,
gzip (Lempel-Ziv) and b r ip (BWT-based) in the case that
the source realization has 10,000 hits. None uf the four meth-
ods have any prior knowledge about the source. We can see a
clear advantage with respect to gzip and bzip in both vari-
ability and averilge redundancy, while the comparison with
respect to PPLI is rather competitive.

In Figure 2 a random Markov ensemble of memory length
up to 4 is tested with source realizations containing 3,000 bits.
All four methods suffer degradation due to the shorter hlock-
length (notice the z-axis scale is wider in Figure 2) hut the
competitive advantage of the new method is enhanced. For
the sake of clarity in the figures, we do not include the re-
sults of the LDPC-based codes in [XI using the same univer-
sal modeler as in the fountain-code based algorithms. While
the new algorithm offers a slight but noticeable advantage in
ternis of compression efficiency with respect t o the LDPC-
h a c 4 method, the fountain-code method is much easier to
implement in a universal setting as it avoids having to store
a library of hlock codes with different rates. Thus, it can be
viewed as providing a natural way to puncture a single code.

REFERENCES
[I] I. Csiszar and J. Korner, Information Theory: Coding Tlreo-

rems fw Dix7ete Memoryless Systems, Academicl New York,
1981.

[2] G. Caire, S . Shumai, and S. Verdh, "Noiseless data compres-
sion with low density parity check cod-," in DIMACS Sene$
in Dtscnte Mathematics and Theoretical Computer Science,
P. Gupta and G. Kramer, E&. American Mathematical Soci-
ety, 2004.

[3] P. E. Allard and A. W. Bridgewater, "A source encoding tech-
nique using itlgebraic codes," Pmc. 1972 Canadian Computer
Conference, pp. 201-213, June 1972.

[4] H. Ohnsorge, "Data comprezsion system for the transmission
of digitalized signals," Conf RPC IEEE Int. Conf. on Commu-
ntcotiuna vol. 11, pp. 485-488, .June 1873.

[5] T. Anchetu, "Syndrome source coding and it universal generul-
ization," IEEE Information Theory, vol. 22, no. 4, pp.
432 ~ d36, July 1976.

127

Binary Markov. k i 10000. max memory = 6

0.4

0.35

0.3

n 25

0.2

n.i5

0.i

0.05

00 0.05 0.I 0.15 0.2 0.25 0.3 0.35
Redundancy (biusymbd)

Figure 1: Noriergodic binary source; 10,000 bits

[6] G. Caire, S. Shunmi, and S. Verdti, "A new data compression
algorithm for sourccs with memory based on error correcting
codesl" 201H IEEE Workshop on Infomatinn Theory, pp. 291-

[7] G. Cuire; S. Shamai. and S. Verdb, "Losslws dirta c o n i p r e
sion with error correction ~otles." 2003 IEEE h i t . Symp. on
Infomation Theory, p. 22, .hme 29- July 4, 2003.

[8] G. Caire, S. Shernai. and S. Verdd. "Universal data mmprcssion
with ldpc codes," Third Internationnl Symposium On Turbo
Codes and Related topic^^ pp. 55-38, Brest, France, September
1-5, 2003.

[9] M. Burrows and D. J. Wheeler, "A block-sorting lossless date
compression algorithm? Tech. Rep. S I X 124, May 1994.

[IO] G. Caire, S . Shamai, A. Shc,krollshi and S . Verdti. "Foun-
tain Codes for Lossless Data Compression," in DIMACS S e e e ~
in Discrete Mathematics and Theoretical Computer Science,
A. Barg and A. Ashkhimin, Eds. Anrerican Mathematical Soci-
ety, 2005.

[U] h.1. Luby, "LT-codes," in Proceedings of the 43rd Annual
IEEE Symposium on the Foundattons of Computer Science
(STOC), 2002, pp. 271-280.

[12] M. G. Luby, "LT codes," Pmc. 4,?d IEEE Symp. Foundations
of Computer Science, pp. 271-280, 2002.

[13] A. Shokrollshi, "Raptor codes." Preprint, 2003.

[14] E. Ordentlirh, G. Seroussi, S. Verdli, K. Viswunathanand M.
Weinberger. and T. Weissman, "Channel decoding of system-
atically encoded unknown redundant sources," in 2004 Froc.
IEEE Symposium on Infomotion Theory, Chicago, IL, 2004.

295, ~ ~ r . :m ~ p r . 4, 200:3.

[I51 J. Hagenauer, A. Barros, and A . Schaefer, ''Lossless turbo
source coding with decremental redundancy," Proc. Fifth Int.
I T C Conference on Source and Channel Coding, pp. 333-839,
Jan. 2004.

[16] G. Cake, S. Shamni, and S. Verdd, "Almost-noiseless joint
source-channel coding-decoding of sources with memory," 5th
International ITG Confemnce on Source and Channel Coding
(SCC), Jan 14-16, 2004.

[17] 0. Etesami, M. Molkaraie, and A. Shokrollahi, "Raptor codes
on symmetric channels," Preprint, 2003.

[lS] R. Palanki and J. Yedidia, "Rateless codes on noiseless chan-
nels," preprint, Oct. 2003.

[lg] K. Visweswariah, S. Kulkami, and S. Verdd, "Output distri-
0 4 bution of the Burrows-Wheeler transform." Pme. 2000 I E E E

Binary mamv Sources. k= 3Wo. max memory = 4

I 0.35

Figure 2: Nonergodic binary source; :33000 bits

Intemational Symposium on Infomation Theory, p. 53, June
27- July 1, 2000.

[ZO] N. J. Larsson, "The context trees of block sorting compres-
sion," Proe. 1998 Data Compression Conference, pp. 189-198,
Mar. 1998.

[21] D. Baron and Y. Bresler, "An O(N) semi-predictive universal
encoder via the BWT," IEEE Thns. Infomation Theov, pp.
928-937, May 2004.

[22] M. G. Luby, M. Mitzenmxher, hl. A. Shokrollahi, and D. A.
Spiclman, "Efficient eramre correcting codes," IEEE %ns.
Infomation Theov, vol. 47, pp. 569-584, Feb. 2001.

ACKNOWLEDGEMENT
The authors would like to thank Bertrmd Ndzana

Ndzane for his help with the simulations reported in
this paper.

o-6
i
128

