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Abstract - T h i s  paper proposes a universal  
variable-length Lossless compression a lgor i thm based 
o n  fountain codes. The compressor conca tena tes  
t h e  Burrows-Wheeler block so r t ing  t ransform ( B W T )  
w i t h  a fountain encoder ,  together w i t h  the closed- 
loop i terat ive doping  a lgo r i thm.  T h e  decompressor  
uses a Belief P r o p a g a t i o n  a lgor i thm i n  conjunct ion  
w i t h  the i t e r a t ive  d o p i n g  a lgor i thm and t h e  inverse 
BWT. Linear-time compression/decompression com- 
plexi ty  and compe t i t i ve  per formance  w i t h  respect to 
state-of-the-art compression algori thms are achieved. 

I. INTRODljCTlON 

It  is known that linear fixed-length encoding can achieve 
for asymptotically large blocklength the minimum compres- 
sion rate for memoryless sources (11 and for arbitrary (not 
necessarily statiunary/ergodic) sources [2j. 

After initial attempts [3 ,  4, 51 t o  construct linear lossless 
codes were nonuniversal, l in i i td  to memoryless sources and 
failed to reach competitive performance with standard data  
compression algorithms, the interest in linear da t a  compres- 
sion waned. Recently [fi, 7, 81 came up with a universal loss- 
less data compression algorithm based on irregular low-density 
parity-check codes which has linear encoding and decoding 
complexity, can exploit source memory and in the experiments 
for binary sources presented in [6, 7: 81 showed competitive 
performance with respect t o  standard compressors such as 
gzip, PPM and bzip. 

The scheme of [6, 7, 81 was based on the important clas 
of sparsegraph error correcting codes called low-density par- 
ity check (LDPC) codes. The block-sorting transform (or 
Burrows-Wheeler transform (BWT)) [9] is a one-twone trans- 
formation, which performs the following operation: it gener- 
ates all cyclic shifts of the given data string and sorts them 
lexicographically. The la3t column of the resulting matrix is 
the BWT output from which the original data string can be 
recovered. knowing the BWT index which is the location of 
the original sequence in the matrix. The BWT shifts redun- 
dancy in the memory to redundancy in the marginal distribu- 
tions. The redundancy in the marginal distributions is then 
much easier to exploit a t  the decoder as the decoding com- 
plexity is independent of the complexity of the source model 
(in particular, the number of states for Markov sources). The 
output of the BWT (as the  blocklength grows) is asymptoti- 
cally piecewise i.i.d. for stationary ergodic tree sources. The 
length, location, and distribution of the i i d .  segments depend 
on the statistics of the source. The existing universal BWT- 
based methods for data  compression generally hinge on the 
idea of compression for a memoryless source with an adaptive 
procedure that learns implicitly the local distribution of the 
piecewise i.i.d. segments, while forgetting the effect of distant 
symbols. 

In the da t a  compression algorithm of [6: 71, the compression 
is carried out by multiplication of the Burrows-Wheeler Trans- 
form of the snurce string with the parity-check matrix of an 
error correcting code. Of particular interest are LDPC coda  
since the belief propagation (BP) decoder is able to  incorpo- 
rate the timevarying marginals a t  the output of the BWT 
in a very natural way. The nonidentical marginals produced 
a t  the output of  the BWT have a synergistic effect with the 
BP algorithm which is able to iteratively exploit imbalances 
in the reliability of variable nodes. The universal implementa- 
tion of the algorithm where the encoder identifies the source 
segmentation and describes it t o  the decompressor is discussed 
in [a]. 

An important ingredient in the compression scheme of 
[ G :  7, 81 is the ability to do decompression at the compres 
SOT. This enehles to tune the choice of the codebaok to the 
source realization and more importantly it enables the use of 
the Closed-Loup Iterative Doping (CLID) algorithm of [ti: 21. 
This is a n  efficient algorithm which enables zerwerror variable- 
length data  compression with performance which is quite com- 
petitive with that  of standard data compression algorithms. 

In this paper, instead of adopting irregular low-density par- 
ity check codes of a given rate approximately matched to the 
source we adopt B different appramh based on rateless foun- 
tain codes. This class of codes turns out to be more natural for 
variable-lengtb data compression applications than standard 
black codes and achieves in general comparable performance 
to the LDPC-based scheme of 16, 7, 81. 

The rest of the paper is organized as follows. Section I1 
reviews the main features of fountain codes for channel cod- 
ing. Section 111 gives a brief summary of the principle of 
belief propagation decoding which is common to both chan- 
nel and source decoding. Our scheme for data  compression 
with fountain codes is explained in detail in Section IV in the 
setting of nonuniversal compression of binary sources. For fur- 
ther background on linear codes far data compression and the 
closed-loop iterative doping algorithm the reader is referred to 
[2]. The modelling module necessary for universal application 
is discussed in Section V. Section VI shows several experi- 
ments and comparisons of redundancy with off-the-shelf data 
compression algorithms run with synthetic sources. Through- 
out the discussion we limit ourselves to binary sources. The 
generalization to nonbinary alphabets is treated in [lo]. 

11. FOUNTAIN CODES FOR CHANNEL CODING 
Fountain codes [ll] form a new class of sparse-graph codes 
designed for protection of data  against noise in environments 
where the noise level is not known a-priori. To achieve thisl a 
fountain code produces a potentially limitless stream of out- 
put symbols for a given vector of input symbols. In practical 
applications, each output symbol is a linear function of the 
input symbols, and the output symbols are generated inde- 
pendently and randomly, according to a distribution which is 
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chosen by the designer. The sequence of linear combinations 
of input symbols is known a t  the drcodcr. Far example, they 
can be generated by pseudorsndom generators with identical 
seeds. 

Unlike traditional codes for which the code performance 
is measured in terms of the error rate as a function of the 
signal to noise ratio, the performance of fountain codes with 
respect to a given decoding algorithm is measured in terms 
of the error rate a a function of the reception ouerhead. The 
overhead of the decoding algorithm for a fountain code over 
a given communication channel is measured as the f r x t i o n  
of additional output symbols rlecessary to achieve the desired 
residual error rate. Here, the phrase "additional" is meant 
to be with respect to the Shannon limit of the underlying 
channel. 

The decoding process for fountain codes is as follows: the 
receiver collects output symbols and estimatrj for each re. 
ceived output symbol the amount of information in that sym- 
bol. For example, when output symbols are bits, this 
of information can be obtained from the log.likelihood ratio 
(LLR) of the received hit. If this ratio is A, then tile empiri. 
cal mutual information between the information syn,bol and 
its LLR equals 1 - h ( p ) ,  where p = 1/(1 + exp(A)). The de- 
coder stops collecting output bits as S O O ~  as the accumulated 
information carried hy the observed channel outputs exceeds 
( l+w)k l  where w is the overhevd associated with the foulltain 
code, and IC is the number of input symbols. Then the decoder 
uses its BP decoding algorithm t o  re~over  the input symboh 
from the information contained in the output symbols. 

If the amount of information in the received output sym. 
bola is unknown but the channel is known to be memory. 
less stationary with capacity C(A) parameterized in the single 
output LLR A, then decoding of fountain codes call be 
plished as follows: the decoder starts with an optimistic guess 
A1 of the channel parameter, collects an  appropriate number 
of output symbols nL such that k l n l  = c(&) - 6, 
6 > 0 is some positive rate margin that enforces successful de- 
coding with high probability, and applies B P  decoding based 
an the guess A,. In c a e  the BP decoder is unmccessful, a 
predetermined number of additional output symbols is col. 
lected such that the total number of output symbols is nz,  
and the BP decoding is applied to the new graph using LLR 
A 1  = C-'(k/nz +a) .  In case the BP decoder is unsuccessful, 
the same process is repeated using n3 > n2 output symbols 
and so on, until decoding is successful. In  practice, instead of 
resetting the BP decoder a t  each new decoding attempt and 
especially if the initial guess XI is likely to be not far from 
the true channel parameter, it might be more convenient t o  
keep the same BP decoder running while incorporating the 
additional collected output symbols. 

Discovered by Michael Luby 1111, LT-codes are one of the 
tirst classes of efficient fountain codes for the erasure chan- 
ne]. An extension of this class of codes is the class of Raptor 
codes 1131. These classes of codes are very well suited for 
salving the compression problem, because the compression al- 
gorithm translates to B channel coding problem for a discrete 
memoryless channel with time-varying transition probability 
lndtrix which depends on the source. In applications, it is 
undesirable to tune the choice of tho code to the sequence of 
transition probabilities, zm in universal applications they are 
not known beforehand. In this case a fountain code is more 
amenable for universal implementation than other classes of 

efficient channel codes, such as irregular LDPC codes [22] ,  
mainly because a single code can be used regardless of the 
source rate. 

For ease of exposition we concentrate on binary fountain 
cod-. Let k be a positive integer, and let V be a distribution 
on F,". A Fountain Code ensemble with parameters ( k , D )  
him as its domein the space F: of binary strings of length 
k ,  and zm its target space the set of all sequences over F z ,  
denoted by F?. Forrnally, a Fountain Code ensemble with 
parameters ( k ; V )  is a linear map F," - FF represented by 
an cc x k matrix where rows are chosen independently with 
identical distribution 'D over Fk. The blocklength of a Foun- 
tain Code is potentidly infinite, but in our data compression 
applications we will solely consider truncated Fountain Codes 
with a number of coordinates which is tailored to the source 
redizdtion. 

The symbols produced by a Fnuntain Code are called output 
symbols, and the k symbols from which these output symbols 
are calculated are called input symbols. The input and output 
symbols could be elements of Fz, or more generally the ele- 
ments of any finite dimensional vector space over F a .  In this 
Paper, we are primarily concerned with Fountain Codes aver 
the field Fir in which symbols are bits. 

A special class of Fountain Codes is furnished by LT-Codes 
Ill]. In thk  c l a s ,  the distribution 2) has a special form de- 
scribed in the following. Let (a,, . . . ,CL) be a distribution on 
(1,. . . , k} So that 0, denotes the probability that the value i 
iS chosen. Often we will denote this distribution by its gen. 
erator polynomial n ( x )  = Qx'. The distribution n ( x )  
induces a distribution on Fk in the following way: For any 
vector U E F! the probability of U is %/(:), where w is the 
Hamming Weight of U. Abusing notation, we will denote this 
distribution in the following by n ( x )  again. An LT-code is a 
Fountain code with Parameters (k, n ( x ) ) .  

The decoding graph of length n of a fountain code with 
parameters ( k ,  n ( x ) )  is a bipartite graph with k nodes on one 
side (called input nodes, corresponding to the input symbols) 
and n nodes on the other side (called output nodes). The 
output nodes correspond t o n  output symbols collected a t  the 
output of the channel. The decoding graph is the Tanner 
gTaPh of the linear encoder - IF," obtained by restricting 
the fountain encoder mapping to those n components actually 
observed at the output. 

A raptor code [I31 berfornls a pre-coding operation with a 
linear code (e.g., an LDPC code) prior to using an LT-code. 
Without a pre-coder the average degree of an LT-coder needs 
to grow at least logarithmically in the length of the input 
to guarantee a small error probability, since otherwise there 
would exist input symbols that are not present in any of the 
linear equations generating the output symbols. The pre-code 
bwers the error floor present in an LT-code with small average 
degree. 

111. BELIEF PROPAGATION DECODING 
In this section we give B description of the BP algorithm 

that is used in the decoding process of LT codes. The  algo- 
rithm proceeds in rounds. In every round messages are passed 
from input nodes to output nodes: and then from output nodes 
back to input nodes. The  message sent from the input node L 

t o  the output node w in the eth round of the algorithm is de- 
noted by m!:?, and similarly the message sent from an  output 
node w to an input node L is denoted by &!,. These messages 

I24 



are scalers in E := R U { i m } .  Wc will perform additions in 
this set according to  the following rules: a + m = m for all 
a # -W. and a - m  = -m for all a # m. The v d w s  of m-m 
and -m + m are undpfined. Moreover, tanh(m/2) := 1: and 
tanh(-m/Z) := -1. 

Every value Y received from the channel has a log- 
likelihood ratio defined as In(Pr[Y = O]/Pr[Y = I]). 

For every oiitput node w ,  we denote by Z, the correspond- 
ing log-likelihwd ratio. 

In round 0 of the BP algorithm the output nodes send to 
all their adjacent inpur. nodes the value 0. Thereafter, the 
following update rules are used to obtain the messages passed 
a t  later rounds: 

where the product is over all input nodes adjacent to w other 
than L, and the sum is over all output nodes adjacent to L 

other than w ,  and e 2 0. 
After running the BP-algorithm for m rounds, the log- 

likelihood of each input symbol associated to node L can be 
calculated as the  sum ~ u & ~ l ,  where the sum is over all the 
output nodes w adjacent to 1. In cases where the pre-code of 
the Raptor code is decoded separately from its LT-code, one 
may gather the log-likelihood of the input symbols, and run 
a decoding algorithm for the pre-code (which may itself be 
the BP algorithm). In that case, the prior log-likelihoods of 
the inputs are set to be e q i d  to the calculated log-likelihoods 
according to (1). 

In data compression applications, the CLID algorithm in- 
troduced in [til rims BP at the encoder and supplies to the 
decoder the value of the lowest reliability symbol a t  certain 
iterations until successful decoding is achieved. Since the de- 
coder runs an identical copy of the BP iterations, it knows 
the identity of the lowest reliability symbol, without the need 
to communicate this information explicitly. The symbols s u p  
plied by the CLID algorithm are referred to z, doped symbols. 

IV. DATA COMPRESS~ON WITH FOUNTAIN CODES 
We calculate from the input symbols (XI). . . , x k )  a vector 

of intermediate symbols (yl,. . . , yk) through a linear invertible 
k x k matrix G: 

( V I , .  .. , y ~ ) ~  = G - * ( x L , . .  . , ~ k ) ~  ( 3 )  

Next, using the intermediate symbols we calculate m nut- 
put symbols (z:*+I,. . . I ~ i r + ~ )  according to a distribution 
n ( x ) .  ' These m output symbols, together with the doped 
symbols obtained from the closed-loop iterative doping algw 
rithm constitute the output of the compressor; hence, their 
total number should be as close as possible to kh(p) .  

The Tanner graph on which the BP is run is U. bipartite 
graph with k i n t e m e d i a t e  nodes (corresponding to the inter- 
mediate symbols) on one side and k input and m output nodes, 
corresponding to the k input and m output symbols, respec- 
tively) on the other side. The invertible matrix G is chosen 

'The choice of 9(z)  is crucial for performance and its specific 
exprasion i s  given at the end of the section. 

as a random realization so that the degree distribution of the 
input nodes is n ( x ) .  In this way the degree distribution 
of both the input and output nudes is equal t o  Q ( x ) .  Notice 
that the resulting graph can be interpreted m the decoding 
graph of a ( k ,  n ( x ) )  LT code with input symbols (yl, . . . , l / k )  

and output symboLs (XI,. . . ,xk+,,,), observed through a non- 
stationary BSC with transition probability p over the first k 
components and 0 over the second m components. The initial 
reliabilities (absolute d u e  of the initial LLR5) of (yt,. . . ,yk), 
(xi , .  . . , Z k )  and (xir+l,. . . , Z k + )  are 0, I log((1 - p ) / p ) l  and 
+m, respectively. 

Even though the matrix G is sparse, its inverse is gen- 
erally dense. This has two consequences: the intermediate 
symbols behave like random coin Hips, and the computation 
of (3) is, in principle, quildratic in k .  In order to compute 
(3) i n  linear time, G should be such that the linear system 
G(y1,. . _  = ( X I ,  .. . , ~ k ) ~  can be solved by direct elim- 
ination of one unknown a t  a time. Equivalently, the BEC 
message-passing decoding algorithm applied to the Tanner 
graph of the parity equation G(y1,. . . , y k ) * + ( x ~ ,  . . . , ~ r ) ~  = 
0 must terminate (i.e., it recovers all intermediate symbols 

We summarize the compression and decompression steps as 
(Yl,. .. ,YC)). 

fdows: 

1. After block sorting the original k-data vector, we obtain 
a block of symbols ( X I , .  . . , X I ) .  

2. An intermediate block (VI, M ,  . . . yk) of symbols is cal- 
culated by ( 3 )  (in practice, this is acconrplished via 
message-phssing). 

3. A vector of m symbols (xk+,, . . . ,zk+,,,) is generated 
from (y,, . . . , yk) through encoding with an LT-code 
with parameters (k,R(x)).  Together with the doped 
bits generated as indicated below, ( X k + l , .  . . , zx+,,,) 
forms the payload of the compressed data. 

4. A bipartite graph is set up between the nodes corre- 
sponding to (VI, ... , y x ) .  and the nodes corresponding 
to (XI , .  . . , X i ; + , ) .  The edges in this graph are defined 
z, fallows: far all i, there is an edge from x, t o  all tlie 
bits among (yl:. . . , y k )  of which xi is the addition. 

5. The BP algorithm is applied to the graph created in the 
previous step. The objective of this BP algorithm is to 
decode the symbols (SI,. . . , yk) using the full knowl- 
edge of the symbols (xk+i ,I*+-) and the a priori 
marginal source probabilities ( P ( x ,  = 1)  = p i  : i = 
1,. . . , k}. Far i = 1,. . , k; the LLR of the bit x, (un- 
available to the decoder) is set to lag((1 - p ; ) / p , ) .  The 
marginal probabilities pi are either known (in a non- 
universal setting) or estimated from the snurce sequence 
itself by the source modeler illustrated in Section V. 
The nodes corresponding to (yl , .  . . , y k )  have initially 
zero reliability. 

6 .  During the BP-algorithm. the CLID algorithm of [6, 21 
is applied. In every e-th round of the iteration the inter- 
mediale bit with the smallest reliability is marked, 
included in the payloitd, and its log-likelihood is set to 
fm or -m depending on whether its value is 0 or 1. 

'For example, G can be constructed row-by-row, such that every 
TOW is sumpled from Ll(s) snhject to tho constraint that all the rows 
created so far are linearly independent. 
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The combined BP-dccoding with iterative doping is ~011- 

tinued until the intermediate bits satisfy all the parity 
check equations of the LT code. 

This distribution was optimized for the binary erasure cham 
ne1 [Ki], but it produces surprisingly good results for binary 
symmetric channels [li, 181. 

7 .  The payload output by the compressor consists of the 
bits (xi+l,.. , ,z~+,,,), followed by the values of the 
dooed intermediate bits. 

V.  MODELLING AND UNIVERSALITY 
In  this section we consider a universal version of our da ta  

The choice of the of parity checks is driven by compression scheme based on modelling the source statistical 
dependencies 'IS a tree' 

values on a given q-ary alphabet A and is generated by a sta- 
tionary ergodic tree S O U I C ~  with S states. Then, the output of 
the BWT, denoted in the following hY 5 = (213 ...,:k) 
verges, IC - m, to a piecewise i.i.d. sequence [19]. This 
means that there exist S' + 1 tramition points, denoted by 

the source entropy I I ( S ) .  

number of doped symbols to 
for SomP rate 
code, the 
it yields a "~'y 

rate m/k  is too close or above the 
due to the fact that, as one may expect, the CLID algorithm * = tl t 2  < _ ' '  - tS'+l  = IC f that Partition 

cover the SOUrce sequence with I,  but is not a good 
encoding in itself. Therefore, in order to have good 
compression performance we should choose m = k ( H ( S )  +a). 

and the higher the resiliencc against channel error and/or era- 
sures. Thus B tradeotf of average vs variance in redundancy is 
possible by tuning the degree of backoff from entropy. If the 
entropy of the source is now known: we compute m based on The nrlmber of segments s' may differ from the number of 
the empirical entropy of the individual Source sequence esti- s ,,f the tree but, for sutficiently large k!  we 
mated by the universal Source modeler. have that S' = S and that Pj(a) is close to the true tree 

The cornpressor performance, and in particular the out- probability distribution conditioned on state j. 
put length variance, can be improved by trying several ran- consists of mudelling the source tree struc- 
dom realizations of the LT code for a given source sequence ture and estimating its State probability by processing the 
and choose the one for which the number of doped symbols BWT sequence. Since the compressor mts  on by 
is smallest. Using LT codes makes this very simple in prac- treating it as 
lice. In fact, any encoding matrix realization can be identified probabilities, goal is to find the most piecewise 
by a single integer number, seed of a pseudo-random number i.i.d. description of Z. G ~ ~ ~ ~ ~ I I ~  speaking, a soII~ce statist.ics 
generator, that can be communicated to the decompressor a t  M is given by the number ,,f StateS (or segments) S', 
the cost of a constant (i.e., independent of the blocklength k) by the distinct transition points [t2, .  . . , ts.) and by the model 
number of additional bits. segment distributions {Qj(a) : j = I , .  . . ,S'}.  The cost of a 

The decompressor also proceeds in several steps which ,,,,,del M to represent Z is measured by t h e  total number of 
closely mimic the compression steps using the closed-loop it- bits 
erative doping algorithm: 

For not too-small blocklength 
it can be observed that the CLID algorithm a snlall Suppose that the murce sequence = ( X I  

if m/k 2 H ( S )  + 6, 
6, that generally depends on the LT 

statistics and orl the blocklength IC, while 
nun,ber of doped symbols if the coding 

is entropy. 

is jnst a "perturbation" ,,f the ~p decoder to force it to re. into segments . . , -11 for j = 1, . . . , s'. The empir- 
ical marginal Rrobebility distribution of symbols in segment 
j is given by p,(a) = ~Vt(a)/(t3+1 ~ t,), where we define the 
segment symbol counts 

The longer m is, the lower the number of required doped bits, %+,--I 

N,(a) = l{Zi = a} (4) 
i d j  

our 

piecewise i,i,d, sequence with given 

to describe a, given by 

1 
S 

c(S, M )  = S'(log, IC+(q-l)b)+x N,(a) log, - 1. Using (xh+~,. . . , ~k+,,,) and the marked intermediate 
symbols &,, all the intermediate bits (yl,. . . , yk) are QM ('I 

> = I  &A reconstructed using a mirror image of the iterations of 
the BP algorithm used at the compressor. 

2. Applying the encoder for the raptor code to the interme- 
diate bits (yl,. . . , yr) the  bits ( X I , .  . . , Zk) are obtained. 

3. An inverse block sorting transform recovers the original 

where we spend log, k bits to encode the transition points3; 
(q - l ) b  bits to encode each nominal segment distribution (see 
later for details), and 

1 
data  sequence. 1 lV, (a) log2 Q30 

aE.4 In instances where the d a t a  compression algorithm is run 
in a channel with a low rate of erasures it is still possible to bits to encode the j t h  segment symbols. Notice that this 
run the CLID algorithm using the Quenched Belief Propaga- length is an estimate of the output length of a Shannon code 
tion algorithm explained in [16]. In general, when the rate of for encoding the symbols in segment j using the model distri- 
erasures is not low it is preferable not to use CLID and use bution Qj(a). We take this as an a t i m a t e  of the cost incurred 
instead a standard Raptor code for compression together with by the fountain code compressor. 
a B P  decompressor that takes into account the probability of In order to find the most efficient piecewise i.i.d. source 
the data. model, we fallow the segment merging procedure explained 

The choice of the output distribution n ( x )  is crucial for the in [21] with a different segment cost function. The BWT 
performance of the algorithm. The experiments reported in output and the original source sequence are related by 
this paper are all based on the following degree distribution: 

3We have 5" - 1 transition points plus logz k hits to encode the 
0.008x + 0.494~' + 0 . 1 6 6 ~ ~  + 0 .0 '73~~  + 0.083x5+ E W T  indes. necessary to perform inverse BWT at the decompres- 
0 . 0 5 6 ~ ~  + 0.037~' + 0.056~" + 0 . 0 2 5 ~ ~ ~  + 0.003z6%'. 

n(z) = 
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a data-dependent pcmmutation r, such that xr(;) = 4. 
Hence, the depth-d context of each symbol 5; is obtained as 
(zX(+-d;.. . , z ~ ( + ~ ) .  By exploiting this fact, it is possiblc 
to partition 5 into segments of symbols with common context 
for a certain maximum depth d,,,, that is a design parame- 
ter of the algorithm. We identify segments by their context. 
Hence, the depth-d,,, segments are arranged as leaves of a 
q-ary tree where the root is the whole sequence Z (segment 
of depth 0) and where, for 0 < d < d,.,, the segment with 
context sf = ( s d . .  . .,.SI) has a t  most q children segments with 
contexts (a,$), for a E A. 

Let the empirical marginal probability distrihritiun of sym- 
bols in segment 5;' be denoted hy P(a1sf) = N(alsf)/L(sf), 
where we define the segment symbol counts 

Iv(ajs:) = I{% =a} ((9 
;e scgmont 

and where L(s$ is the segment length. The cast of directly 
encoding segment sf is given by 

- 
where Q(als;() is a quantized version of P(aIsf) using (q - l ) b  
hits. The segment merging algorithm is initialized hy associ- 
ating to each depth-d,, segment its cost c (sp-). Then, far 
depth d = d,,,,, - 1 to d = 0, the cost associated to segment 
sf is given hy the minimum bctween the sum of the costs of 
its children segnients and the cost of representing it directly. 
The children segments are merged and their corresponding 
branches in the segment tree are pruned if 

C c ( a , s ? )  > C(S?) (8) 
-til 

Otherwise, the branches are kept in the tree 
The algorithm terminates when it is not possible to prune 

the tree further. The leaves of the pruned tree correspond to  
the segments of the optimal piecewise i.i.d. model M for 2 
(subject to the tree source assumption of the original source). 

As envisioned in [6] (and implemented in state-of-theart 
BWT-based compressors) it is convenient to pre-process the 
BWT output with the move-to-front algorithm when the 
source has a large number of states S relatively to the black- 
length k, as is often the case in practice. The move-to-front 
transformation replaces each symbol 6 = a  with the number 
of distinct symbols appeared in Z since the last appearance 
of a. Since the symbols at  the input of the move-to-front 
algorithm are independent (or weakly dependent) the mast 
probable symbol in the transformed sequence is 0, the next 
most probable is 1 and so on. The beneficial effect of move- 
to-front on the segment merging algorithm stems from the fact 
that  after move-twfront the empirical distributions of the seg- 
ments tend to he more similar since move-to-front implicitly 
implements B symbol permutation that arranges probabilities 
in decreasing order. Therefore, the merging algorithm is mure 
likely to merge segments after the move-tn-front operation. 
If the number of states is smell relative to the hlocklength, 
then the segments are long enough and it is preferable not t o  
merge segments even if their distributions are similar. Thus 
in those caxs, move-to-front may actually incur in a small 
performance degradation. 

VI. EXPERIMENTS 
In order t o  compare the universal version of our scheme 

with tht: leading data compression methods such as gzip,  bzip 
and PPM we will use synthetic Markov sources whose entropy 
is easily computable YO that we can gauge how far the vaii- 
nus methods are from the Shannon limit. We are particularly 
interested in the regime of moderate length. Not only the 
gaps from the Shannon limit would vanish (in terms of dif- 
ference between rate and entropy) for long lengths, hut as we 
mentioned above the new proposed methods are particiiliirly 
useful for adaptation to source-channel schemes in data trans- 
mission applications where relatively short data  packets are of 
interest. 

Instead of experimenting with a given Markov sourcel we 
generate an  ensemble of binary Markov sorirces whose tran- 
sition probabilities are chosen a t  random. The number of 
states is equally likely to be I>  2, 4, 8: 16, 82, and 64. A non- 
ergodic source ensemble is obtained by generating indepen- 
dently the memory length (binary logarithm of the number of 
states), and then conditional distributions are also generated 
randomly producing sources with entropy ranging from 0.115 
to 0.75 bit/symbol. The same ensemble was used to test the 
LDPC-based scheme in [XI. Figure 1 shows a histogram of 
the absolute redundancy of the proposed methud with PPM, 
gzip (Lempel-Ziv) and b r ip  (BWT-based) in the case that 
the source realization has  10,000 hits. None uf the four meth- 
ods have any prior knowledge about the source. We can see a 
clear advantage with respect to gzip and bzip in both vari- 
ability and averilge redundancy, while the comparison with 
respect to  PPLI is rather competitive. 

In Figure 2 a random Markov ensemble of memory length 
up to 4 is tested with source realizations containing 3,000 bits. 
All four methods suffer degradation due to the shorter hlock- 
length (notice the z-axis scale is wider in Figure 2) hut the 
competitive advantage of the new method is enhanced. For 
the sake of clarity in the figures, we do not include the re- 
sults of the LDPC-based codes in [XI using the same univer- 
sal modeler as in the fountain-code based algorithms. While 
the new algorithm offers a slight but noticeable advantage in 
ternis of compression efficiency with respect t o  the LDPC- 
h a c 4  method, the fountain-code method is much easier to 
implement in a universal setting as it avoids having to store 
a library of hlock codes with different rates. Thus, it can be 
viewed as providing a natural way to puncture a single code. 
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