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ABSTRACT

This paper describes a novel approach for content based image retrieval and its specialization
to face recognition. While most face recognition techniques aim at modeling faces, our goal
is to model the transformation between face images of the same person. As a global face
transformation may be too complex to be modeled directly, it is approximated by a collection
of local transformations with a constraint that imposes consistency between neighboring
transformations. Local transformations and neighborhood constraints are embedded within
a probabilistic framework using two-dimensional Hidden Markov Models (2-D HMMs). We
further introduce a new efficient technique, called Turbo-HMM (T-HMM), for approximating
intractable 2-D HMMs . Experimental results on a face identification task show that our
novel approach compares favorably to the popular Eigenfaces and Fisherfaces algorithms.
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1. INTRODUCTION

Pattern classification is concerned with the general problem of inferring classes or “cat-
egories” from observations [1]. The success of a pattern classification system is largely
dependent on the quality of its stochastic model, which generally models the generation of
observations, to capture the intra-class variability.

Face recognition is a challenging pattern classification problem [2, 3] as face images of
the same person are subject to variations in facial expression, pose, illumination conditions,
presence or absence of eyeglasses and facial hair, etc. Most face recognition algorithms
attempt to build for each person P a face model M, (the stochastic source of the system)
which is designed to describe as accurately as possible his/her intra-face variability.

This paper introduces a novel approach for content based image retrieval, which is applied
to face identification, and whose stochastic model focuses on the relation between observa-
tions of the same class rather than the generation process. Here we attempt to model a
transformation between face images of the same person. If 7 and Fq are respectively tem-
plate and query images, and if M is the probabilistic transformation model, then our goal
is to estimate P(Fr|Fg, M). An important assumption made here is that the intra-class
variability is the same for all classes and thus, that M can be shared by all individuals. As
the global face transformation may be too complex to be modeled directly, the basic idea
is to split it into a set of local transformations and to ensure neighborhood consistency of
these local transformations. Local transformations and neighboring constraints are embed-
ded within a probabilistic framework using two-dimensional Hidden Markov Models (2-D
HMMs). A similar approach for general content based image retrieval appeared first in [4]
and preliminary results were presented on a database of binary images.

The remainder of this paper is organized as follows. Our probabilistic model of face
transformation based on 2-D HMMs will be detailed in the next section. In section 3 we
introduce Turbo-HMMs (T-HMMs), a set of interdependent horizontal and vertical 1-D
HMMs that are exploited to approximate the computationally intractable 2-D HMMs. T-
HMDMs are one of the main contributions of this paper and one of the keys of the success
of our approach as we derive efficient formulas to compute P(Fr|Fg, M) and to train
automatically all the parameters of the face transformation model M. In section 4 we
compare conceptually our novel algorithm to two different face recognition approaches that
are particularly relevant: modeling faces with HMMs [5, 6] and Elastic Graph Matching [7].
In section 5 we give experimental results for a face identification task on the FERET face
database [8] showing that the proposed approach can significantly outperform two popular
face recognition algorithms, namely Eigenfaces and Fisherfaces. Finally, we outline future
work.

2. MODELING FACE TRANSFORMATION

In this section, we model the transformation between two face images of the same person
using a probabilistic framework based on local mapping and neighborhood consistency.

2.1. Framework

Our assumption is that a global transformation between two face images of the same person
may be too complex to be modeled directly and that it should be approximated with a set of
local transformations. They should be as simple as possible for an efficient implementation
but such that the composition of all local transformations, i.e. the global transformation,
should be rich enough to model a wide range of transformations between faces of the same
person. However, if we allow any combination of local transformations, the model could be
over-flexible and capable of patching together very different faces. This naturally leads to
the second component of our framework: a neighborhood coherence constraint. The purpose
of the neighborhood constraint is to provide context information and to impose consistency
requirements on the combination of local transformations. It must be emphasized that such



neighborhood consistency rules produce dependence in the local transformation selection
for all image regions and the optimal solution must therefore involve a global decision. To
combine the local transformation and consistency costs, we propose to embed the system
within a probabilistic framework using 2-D HMMs.

At any location on the face, the system is considered to be in one of a finite set of states.
Assuming that the 2-D HMM is first-order Markovian, the probability of the system to
enter a particular state at a given position, i.e. the transition probability, depends on the
state of the system at the adjacent positions in both horizontal and vertical directions. At
each position, an observation is emitted by the state according to an emission probability
distribution. In our framework, local transformations can be viewed as the states of the
2-D HMM and emission probabilities model the local mapping cost. These transformations
are “hidden” and information on them can only be extracted through the observations.
Transition probabilities relate states of neighboring regions and implement the consistency
rules. In the following, we specify the local transformations and neighborhood constraints.

2.2. Local Transformations

A local transformation maps a region in a template image Fr to a cell in a query image
Fgo- In the simplest setting, regions are obtained by tiling JFr into possibly overlapping
blocks. However, one could envision a more complex tiling scheme where regions may be
irregular cells, e.g. the outcome of a segmentation algorithm. There are two possible types
of transformations: geometric and feature transformations. Translation, rotation and scaling
are examples of simple geometric transformations and may be useful to model local defor-
mations of the face. In the simple case where features are the pixel values, gray level shift or
scale would be examples of simple feature transformations and could be used to compensate
for illumination variations. The difference between geometric and feature transformations is
not as clear-cut as it may first seem and is dependent on the domain of the feature vectors.
For instance, while a scaling was previously classified as geometric transformation, it could
also be interpreted as a feature transformation in the Fourier domain. In the remainder
of this paper, the only geometric transformation we used was the translation (if blocks are
small enough, one can approximate a slight global affine transformation with a set of local
translations). Hence, cells of F¢ are blocks of the same size as the blocks of Fr. As we
chose Gabor features (c.f. section 5.2) which are robust to small variations in illumination,
we did not implement any feature transformation.

We now explicate the emission probability which models the cost of a local transforma-
tion. An observation o; ; is extracted from each block (i, j) of Fr (c.f. Fig. 1). Let g;;
be the state associated with block (Z,j). The probability that at position (i,7) the system
emits observation o; ; knowing that it is in state ¢; ; = 7, where 7 = (7,,7) is a translation
vector, and knowing A, the set of parameters of the HMM, is b, (0;,;) = P(0s|q:,; = T, A).
Let z; ; = (24,5,vs,;) denote the coordinates of block (i, j) (i.e. the coordinates of its upper
left pixel) in Fr. Let 2] ; be the coordinates of the matching block in Fq: 27; = 2i; + 7.
The emission probability b, (0;,;) represents the cost of matching these two blocks.

br(0;,;) is modeled with a mixture of Gaussians (linear combinations of Gaussians have
the ability to approximate arbitrarily shaped densities):

-(045) wa’“brk i) (1)

{br,x(0i,;)} are the component densities and {wT’k} are the mixture weights and must sat-

isfy the constraint: V(i,7) and V7, >, w7 = 1. Each component density is a N-variate
Gaussian function of the form:
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Figure 1: Local matching

where /f * and ET(“ are respectively the mean and covariance matrix of the Gaussian, N
is the size of the feature vectors and |.| is the determinant operator. This HMM is non-
stationary as Gaussian parameters depend on the position (4, ).

The choice of notation P(Fr|Fg, M) suggests that we should separate Gaussian param-
eters into face dependent (FD) parameters, i.e. parameters that depend on a particular
query image, and face independent transformation (FIT) parameters, i.e. the parameters
of M that are shared by all individuals. The benefits of such a separation are discussed in
section 4.1. Let m] ; be the feature vector extracted from the matching block in Fg. We
use a bipartite model which separates the mean into additive FD and FIT parts:

k.7 __ ,k
pij =mi;+ 0 (3)

where m] ; is the FD part of the mean and 6T % is a FIT offset. Intuitively, b, x(0;,;) should
be approx1mate1y centered and maximum near m] ;. The parameters we need to estimate
are the FIT parameters, i.e. {w}, {6} and {Z}.
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2.3. Neighborhood Consistency

The neighborhood consistency of the transformation is ensured via the transition probabil-
ities of the 2-D HMM. If we assume that the 2-D HMM is first order Markovian in a 2-D
sense, the transition probabilities are of the form P(g; ;|¢;,j—1,¢—1,;,A). However, we show
in the next section that a 2-D HMM can be approximated by a Turbo-HMM (T-HMM): a set
of horizontal and vertical 1-D HMMs that “communicate” through an iterative process. The
transition probabilities of the corresponding horizontal and vertical 1-D HMMSs are given
by:

als(t;7') = P(qi; = 7lgij-1 = 7', A) al;(1;7) = P(gij = Tlgi-1; =70 (4)
azﬁj and az‘-fj model respectively the horizontal and vertical elastic properties of the face at

position (4,7) and are part of the face transformation model M.
As we want to be insensitive to global translations of face images, we choose a’ and a¥
to be of the form:
H e 1% oV
a; ](T T ) i,j (67—) a; ](T T ) i,j(dT) (5)
where 67 = 7 — 7. We can apply further constraints on the transition probabilities to
reduce the number of free parameters in our system. We can assume for instance separable
transition probabilities:

alt,(67) = a7 (67,) x a}j‘;/(aTy) a?;(07) = a¥? (07,) X a Y(67y) (6)
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Figure 2: Neighborhood consistency

We can also assume parametric transition probabilities. If 77 and Fg have the same scale
and orientation, then af; and aY; should have two properties: they should preserve both
local distance, i.e. T and 7' should have the same norm, and ordering, i.e. 7 and 7 should
have the same direction. An horizontal separable parametric transition probability that

satisfies the two previous constraints is:

2 2
z z 1 67—.% 1 oT,
aj; (07s) = c(o]) exp { =5 (m) ai (67y) = c(o{}) exp { =5 (ﬁ) (7)
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where ¢ is a normalization factor such that ), af(é7,) = 1 and >6r, a; f(6my) = 1.
Similar formulas can be derived for vertical transition probabilities.

In this section, we specified and derived emission and transition probabilities, but have
not introduced another traditional HMM parameter: the initial occupancy probability dis-
tribution. We assume in the remainder that the initial occupancy probability is uniform
to ensure invariance to global translations of face images. In the next section, we derive
efficient formulas to compute P(Fr|Fg, M) and to train automatically all the parameters
of the face transformation model M, i.e. {w}, {6}, {=} and transition probabilities {a*}
and {a"}.

3. TURBO-HMMS

While the HMM has been extensively applied to one-dimensional problems, the complexity
of its extension to two dimensions grows exponentially with the data size and is intractable in
most cases of interest. Many approaches to solve the 2-D problem consist of approximating
the 2-D HMM with one or many 1-D HMMs. Perhaps the simplest approach is to trace
a 1-D scan that takes into account as much of the neighborhood relationship of the data
as possible, e.g., the Hilbert-Peano scan [9]. Another approach is the so-called pseudo 2-D
HMM [10] which assumes that there exists a set of “super” states which are Markovian and
which subsume a set of simple Markovian states. Finally, the Path Constrained Variable
State Viterbi algorithm [11] considers sequences of states on a row (or a column, a diagonal,
etc.) as states of a 1-D HMM. However, this 1-D HMM has such a huge number of states
that the direct application of the Viterbi algorithm is often unpractical. Hence the central
idea is to consider only the N sequences with the largest posterior probabilities.

We recently introduced a novel approach that transforms a 2-D HMM into a Turbo-
HMM (T-HMM): a set of horizontal and vertical 1-D HMMs that “communicate” through
an iterative process. Similar approaches have been proposed in the image processing com-
munity, mainly in the context of image restoration [12] or page layout analysis [13]. The



term “turbo” was also used in [13] in reference to the now celebrated turbo error-correcting
codes. However, in [13] the layout of the document is pre-formulated with two orthogonal
grammars and the problem is clearly separated into horizontal and vertical components in
distinction with the more challenging case of general 2-D HMMs.

While [14] focused on decoding, i.e. searching the most likely state sequence, in this
section we provide efficient formulas to 1) compute the likelihood of a set of observations
given the model parameters 2) train the model parameters.

3.1. The Modified Forward-Backward
We assume in the following that the reader is familiar with 1-D HMMs (see e.g., [15]). Let

O = {o0;;,i =1,...,I,j = 1,...,J} be the set of all observations. For convenience we
also introduce the notatlons olt and o}’ for the i-th row and j-th column of observations,
respectively. Similarly, @ = {qw,z =1,...,I,j = 1,...,J} denotes the set of all states,

while ¢/t and ¢} denote the i-th row and j-th column of states. Finally, let A be the set of
all HMM parameters, and let A7 and )\}’ be the respective rows and columns of parameters.

The goal of this section is to compute P(O|\). It was shown in [14] that the joint
likelihood of O and @) given A can be approximated by:

P(OJQlA)%H Jqul)‘v H‘Pq’ljloz )\ ) (8)
J
where each term P(0), ¢/ |\Y) corresponds to a 1-D vertical HMM and the term []; P(g; j|o}*, A}*)
is in effect a horizontal prior for column j. We assume that the quantity P(g; |0, A\}) is
known, i.e. that it was obtained during the previous horizontal step.

Tq1,1 P(‘]l,1|)\)
by, ;(0i,5) P(04,514i,5, A)
a% (@i,5) | P(0i1, 045,05 AT)
Bi, '(Qi,j) P(Oz j+15---04 J|qz,_77 )\)
’7@,]’ (Qi,J) P(q’l,J |OZ{7 /\Z{)
Yi,j (qi,]) (%H,] (%,J) + ’Yz,] (Qz,j))/Q

Table 1: HMM notation summary

If we sum over all possible paths, we obtain the marginal:

P(O|N) > P(0,QN)
Q

2 1~

I3 |

Let us introduce the compact notation PY = [P(0Y,q) |AY) [1; P(g;loft, A¥)]. {P}} can
be computed using a modified version of the forward- backward algorithm which we describe
by, ;(0i5) ifj=1

bgi; (0i5)7i5(qi,;) ij>1

R

0; ’quv HP(qi,j|OZ{a)‘Z{)‘|

Q

o}, ay 1A}) HP(qi,ﬂOZ{a/\?)] (9)

next after introducing one last notation: bg'f,j (0i,5) = {
The Forward o variables:

e Initialization:

% N — 7rQ1,1b111,1(01,1) lfj =1
O[l,j(ql,]) - { b’;—i)j (Ol,j) if] > 1 (10)



e Recursion:

z+1,g ql-‘rl,J Z Q; j qh] qz ,39i41,5 b;-f+1,j (Oi"l‘laj) (11)
qi,j
e Termination:
=Y a},(ar;) (12)
q1,j

The Backward 3 Variables:

e Initialization:

Bry=1 (13)
e Recursion:
ZACHEID DAL CEE DL ARICEEE) (14)
Tit1,j
Occupancy Probability ~:
a}{j(qi,j)ﬂxj (g,5)

Y (q: ;) = 1
%’J(qw) Eqi’j a}fj(lh,j)ﬂ,)fj (¢i,5) (15)

Similar formulas can be derived for the horizontal pass. It is worthwhile to note that
our re-estimation equations are similar to the ones derived for the page layout problem in
[13] based on the graphical model formalism. Also, we can see that the interaction between
horizontal and vertical processing, which is based on the occupancy probability ~y, is not as
simple as the one used in [12].

Let us next consider the steps of the algorithm. We first initialize v’s uniformly (i.e.
assuming no prior information). Then, the modified forward-backward algorithm is applied
successively and iteratively on the rows and columns. Whether the iterative process is initial-
ized with row or column operation may theoretically impact the performance. However, this
choice had a very limited impact in our experiments and we always started with a horizontal
pass. This algorithm is clearly linear in the size of the data and can be further accelerated
with a parallel implementation, simply by running the modified forward-backward for each
row or column on a different processor.

One should be aware that we do not end up with one score but with one horizontal score
P(O|A™), and one vertical score P(O|AY). Combining these two scores is a classical problem
of decision fusion. As experiments showed that these scores were generally very close, we
simply averaged them to obtain a global score. Although this simple heuristic may not be
optimal it provided good results.

3.2. The Modified Baum-Welch

We now estimate the parameters of the T-HMM. Generally, the Mazimum Likelihood (ML)
re-estimation formulas can be derived directly by maximizing Baum’s auxiliary function [16]:

QM) = log P(0,¢|\)P(0,q|N) (16)
q
Here the problem is that we obtain two equations:
QU*IX) = 1og P(0,qIA*)P(0,¢|X%)  QIAY) = 3 log P(0,q|X")P(0,q|XY)
q€Q q€Q
(17)
that may be incompatible in the case where v*’s and v¥’s do not converge. So a simple
combination rule is to maximize:

QAN = QM) + Q(INY) (18)



To train the system, we provide a set of pairs of pictures. Each pair contains a template and
a query image that belong to the same person. We now provide formulas for re-estimating
the Gaussian parameters and transition probabilities. Index p in the sums of the following
formulas is for the p-th pair of pictures. Although each quantity o;,;, m];, vi,; and &,;
should be indexed with p in the following equations, we omitted this index on purpose to
simplify notations.

Let 775 (7, k) (resp. ~Y;(7,k)) be the probability of being in state g;; = T at position
(4, ) during the horizontal (resp. vertical) pass with the k-th mixture component accounting
for o; ;:

w]fbr k(01,5 w]Fbr k(03,5

H H V V
Yig (T:k) = vi5(T) = Yini (15 k) = 75(T) = (19)
! ! ok wz’,}kbr,k(oi,j) ! ! 2k wz’,’jkbr,k(oi,j)
and " »
(T k) + (1, k
Vi (T, k,‘) _ 71,] (T ) . v ,J (T ) (20)
We also introduce:
H H % H
§ij(T, T+ 67) = Z PP (21)

T

We assume diagonal covariance matrices and general transition matrices. The re-estimation
formulas are as follows (the update for a single dimension is shown for § and o):

20 Vi (T, k) (01,5 —m] ;)

ok 22
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T T,k

(O’T’.k)2 — Zp Yi,j (T7 k) (Oi,j —my; = 51',]‘ )2 (23)

I > op Yii (75 F)
wrk = 2pid(E) (24)
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ior) = ZegtulnTE00) (25)
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A formula similar to (25) can be derived for vertical transition probabilities.

4. RELATED WORK

The goal of this section is not to provide a full review of the literature on face recognition (the
interested reader can refer for instance to [2, 3]) but to compare the proposed approach to two
different algorithms from a conceptual point of view. The first one consists in modeling faces
with HMMs [5, 6]. The interesting point is that, although we use the same mathematical
framework (HMMs), the philosophy is different as [5, 6] model a face while our algorithm
models a transformation between faces. The second algorithm, Elastic Graph Matching
(EGM) [7], is particularly relevant to this paper as its philosophy, based on local similarity
and neighborhood consistency, is similar to the philosophy of the proposed algorithm.

4.1. Modeling Faces with HMMs

Modeling faces with HMMs was pioneered in [5] and later improved in [6]. While early
work involved a simple top-bottom 1-D HMM, a model based on pseudo 2-D HMMs (P2-D
HMMs) [10] proved to be more successful. The assumption of P2-D HMMs is that there
exists a set of “super” states which are Markovian and which contain themselves a set of
simple Markovian states. In the following, we do not compare approaches in terms of their



mathematical frameworks, i.e. we do not compare P2-D HMMs to T-HMMs, but in terms
of the philosophies of both methods.

While our HMM models a face transformation, HMMs in [5, 6] model faces. In our
framework, the parameters of the HMM can be clearly separated into FD parameters (the
features extracted from Fg), and FIT parameters (8’s, ¥’s, w’s and transition probabilities
a™’s and a¥) as seen in section 2.2. These transformation parameters are shared by all
persons as we assume that they have similar facial properties. The intra-class variability, due
for instance to different facial expressions, can therefore be estimated reliably by pooling the
data of all training individuals. Of course, if one had large amounts of enrollment material
for each person, one could envision to train one set of face transformation parameters per
individual but the amount of enrollment data is generally scarce.

One major drawback of the approach in [5, 6] is that the separation of parameters cannot
be done as easily and generally these HMMs confound all sources of variability. For instance,
each face HMM has to model variations due to facial expressions. Therefore, to train the
mixture of Gaussians that would correspond to the mouth, one should provide for each
person an example image with the mouth in various states, open, smiling, etc. and it is
conceivable that in each face HMM a fair number of Gaussians models the various facial
expressions. Hence, one has to train a large number of Gaussians using large amounts of
training data from the same individual to get a good performance.

One drawback of our method is that we do not have a probabilistic model of the face.
m]; is directly extracted from a face image and is not the result of a training process.
Nevertheless, as we efficiently separate parameters, only a small number of template images
should be required to train m7 ;’s.

4.2. Elastic Graph Matching (EGM)

EGM stems from the neural network community. Its basic principle is to match two face
graphs in an elastic manner [7, 17]. The quality of a match is evaluated with a cost function

C:
C=0Cy+ pCe (26)

where C, is the cost of the local matchings, C. is the cost of local distortions and p is a
rigidity parameter which controls the balance between C, and C.. The matching is gener-
ally a two-step procedure: the two faces are first mapped rigidly manner and then elastic
matching is performed through iterative random perturbations of the nodes of the graph.
Both optimization steps correspond to a Simulated Annealing (SA) at zero temperature [7].

[18] elaborated on the idea with the Elastic Bunch Graph Matching (EBGM) which can
be used for face recognition and also face labeling. Both algorithms were later improved,
especially to incorporate local coefficients that weight the different parts of the face according
to their discriminatory power using for instance Fisher’s Linear Discriminant (FLD) [19] or
Support Vector Machines (SVM) [20].

It is clear that the philosophies of EGM and of the proposed framework are distinct but
bear obvious similarities. In our approach, the joint log-likelihood of observations and states
log P(O, Q|\) can be separated into:

log P(0,Q|)) =1og P(0|Q, A) +log P(Q[)) (27)

The first term, which depends on emission probabilities, corresponds to the local matchings
cost C, and the second term, which depends on transition probabilities, corresponds to the
local distortions cost C.. Moreover, in the simple case where we use one Gaussian mixture
for the whole face with a single Gaussian in the mixture (E:f = X) and where there is
for the whole face one unique transition probability which is separable and parametric (c.f.
2.3), the formula for the joint log-likelihood log P(O, @|A) would be almost identical to C
in [7]. The main advantages of our novel approach are in: 1) the use of the well-developed
HMM framework and 2) the use of a shared deformable model of the face.



First, as shown in section 3.1, one can use a modified version of the forward-backward
algorithm to compute the likelihood of the observations knowing the set of parameters. In
EGM, the quality of the matching is generally assessed using a best match which in the
HMM framework is equivalent to the Viterbi algorithm, whose aim is to find the best path
in a trellis. Our score, which takes into account all paths, should be more robust.

Another advantage is the existence of simple formulas to train automatically all the
parameters of the system (c.f. section 3.2). This is not the case with EGM as the p parameter
is generally set manually. [19] showed experimentally that p only has a small impact on the
final performance. However, as different parts of the face have different elastic properties, it
would be natural to use different elastic coefficients for each part of the face. Hence, p may
have a limited influence either because C. is non-informative, which is implicitly suggested
by [20] for instance where C, is discarded, or because the elastic properties of the face are
poorly modeled with one unique parameter p. Using multiple elasticity coefficients is only
possible if these coefficients can be trained automatically. To the best of our knowledge, it
has never been investigated in the EGM framework and it is evaluated in the next section.

Finally, while different methods have been proposed to weight the different parts of the
face according to their discriminatory power [19, 20], they all suggest to train one set of
parameters per person. To train these parameters, one should have a reasonable amount of
enrollment data. The interpretation of “reasonable” is application dependent but at least
two images should be provided by each person at enrollment time. In our case, as the model
of face transformation is shared, its parameters can be trained off-line and do not need to
be re-estimated each time a new user is enrolled. Thus, we are able to weight the different
parts of the face even when one unique image is available at enrollment time.

5. EXPERIMENTS

In this section, we assess the performance of our novel algorithm on a face identification
task and compare it to two popular algorithms: Eigenfaces and Fisherfaces.

5.1. The Database

All the following experiments were carried out on a subset of the FERET face database [8].
We used 1,000 individuals: 500 for training the system and 500 for testing the performance.
We use two images (one target and one query image) per training and test individual.
This means that test individuals are enrolled with one unique image. Target faces are FA
images extracted from the gallery and query images are extracted from the FB probe. FA
and FB images are frontal views of the face that exhibit large variabilities in terms of facial
expressions. Images are pre-processed to extract normalized facial regions. For this purpose,
we used the coordinates of the eyes and the tip of the nose provided with each image. First,
each image was rotated so that both eyes were on the same line. Then a square box, twice
the size of the inter-ocular distance, was centered around the nose. Finally the corresponding
region was cropped and resized to 128x128 pixels. See Fig. 5 for an example of normalized
face image.

5.2. Gabor Features

We used Gabor features that have been successfully applied to face recognition [7, 19, 18, 21]
and facial analysis [22]. Gabor wavelets are defined by the following equation:

ol 112117
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2
Yuw(z) = ”k’;;’“ exp ( ) lexp(ik,, ,2) — exp(—0”/2)] (28)

where

o exp(ik,,,2) is a plane wave. k., the center frequency of the filter, is of the form
ku., = k,exp(i¢,). ¢ and v define respectively the orientation and scale of k, .. Let

10



kmaz be the maximum frequency and f be the spacing factor. Then k, = kmqz/f". If
M be the number of orientations, ¢, = mu/M.

ko222 - . . .
® exp (—%) is a Gaussian envelope which restricts the plane wave and o de-

termines the ratio of window width to wavelength. We should underline that, in our
experiments, the plane wave is also restricted by the size of the blocks (c.f. section
2.2).

e exp(—0?/2) is a term that makes the filter DC free.

o ||ky,v||?/o® compensates for the frequency-dependent decrease of the power spectrum
in natural images.

Each kernel %, , exhibits properties of spatial frequency, spatial locality and orientation
selectivity. Gabor responses are obtained through the convolution of the face image and the
Gabor wavelet and we use the modulus of these responses as feature vectors.

After preliminary experiments, the block size was fixed to 32x32 pixels and we chose the
following set of parameters for the Gabor wavelets: five scales, eight orientations, o = 2,
Emaz = /4 and f = v/2. Finally, for each image we normalized the feature coefficients to
zero mean and unit variance which performed a divisive contrast normalization [22].

5.3. The Baseline: Eigenfaces and Fisherfaces

For comparison purpose, we implemented the Eigenfaces and Fisherfaces algorithms. We
should note that both methods are examples of techniques where one attempts to build a
model of the face.

Eigenfaces are based on the notion of dimensionality reduction. [23] first outlined that
the dimensionality of the face space, i.e. the space of variation between images of human
faces, is much smaller than the dimensionality of a single face considered as an arbitrary
2-D image. As a useful approximation, one may consider an individual face image to be
a linear combination of a small number of face components or eigenfaces derived from a
set of reference face images. One calculates the covariance or correlation matrix between
these reference images and then applies Principal Component Analysis (PCA) [24] to find
the eigenvectors of the matrix: the eigenfaces. To find the best match for an image of a
person’s face in a set of stored facial images, one may calculate the distances between the
vector representing the new face and each of the vectors representing the stored faces, and
then choose the stored image yielding the smallest distance [25].

While PCA is optimal with respect to data compression [23], in general it is sub-optimal
for a recognition task. For such a task, a dimension reduction technique such as Fisher’s
Linear Discriminant (FLD) should be preferred to PCA. The idea of FLD is to select a
subspace that maximizes the ratio of the inter-class variability and the intra-class variability.
However, the straightforward application of this principle is often impossible due to the high
dimensionality of the feature space. A method called Fisherfaces was developed to overcome
this issue [26]: one first applies PCA to reduce the dimension of the feature space and then
performs the standard FLD. A major similarity between our novel approach and Fisherfaces
is the fact that both algorithms assume that the intra-class variability is the same for all
classes. The difference is in the way to deal with this variability: while Fisherfaces try to
cancel the intra-face variability, we attempt to model it.

For a fair comparison, we did not apply directly Eigenfaces and Fisherfaces on the gray
level images but on the Gabor features as done for instance in [21]. A feature vector was
extracted every four pixels in the horizontal and vertical directions (which means that there
is a 28 pixels block overlap) and the concatenation of all these vectors formed the Gabor
representation of the face. In [21] various metrics were tested to compute the distance
between points in an Eigenface or a Fisherface spaces: the Ly, Ly (Euclidean), Mahalanobis
and cosine distances. We chose the Mahalanobis metric which consistently outperformed
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all other distances. The performance was plotted on Fig. 3 as a function of the number of
Eigenfaces and Fisherfaces.
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Figure 3: Identification rate of Eigenfaces and Fisherfaces as a function of the number of
Eigenfaces and Fisherfaces.

The best Eigenfaces and Fisherfaces identification rates are respectively 80% with the
maximum possible number of Eigenfaces and 93.2% with 300 Fisherfaces. Fisherfaces were
not guaranteed to perform so well due to the very limited number of elements per class in
the training set (only two faces per person). However, in our experiments, they managed to
generalize on novel test data.

5.4. Performance of the Novel Algorithm

Before showing experimental results of the proposed approach, we describe in detail the
experimental set-up. To reduce the computational load, and for a fair comparison with
Eigenfaces and Fisherfaces, the precision of a translation vector 7 was limited to 4 pixels in
both horizontal and vertical directions and a feature vector m was extracted every 4 pixels
of the query image. For each template image, a feature vector o was extracted every 16
pixels in both horizontal and vertical directions (which means that there is a 16 pixels block
overlap) and it resulted in 7 x 7 = 49 observations per template image. We tried smaller step
sizes for template images but this resulted in marginal improvements of the performance at
the expense of a higher computational load.

We implemented traditional optimizations to speed up the algorithm at training and test
time:

o windowing: if we assume that Fr and Fg are approximately aligned, then for each
block in Fr one can limit the search for possible matching blocks in Fg in a neigh-
borhood (or window) of this block by setting b-(0;;) = 0 if |7,| > T, or |1,| > T,.
While T, and Ty should ideally be input dependent, based for instance on some a pri-
ori knowledge on the distortion between Fr and Fq, for simplicity these parameters
were constant in our system. After preliminary experiments, T, and T} were set to 8
pixels which limited the number of matching blocks, i.e. of possible active states, to
5 x 5 = 25 at each position.

e transition pruning: to limit the number of possible output transition probabilities
at each state we discard unlikely transitions, i.e. unreasonable deformations of the
face. For the horizontal transition probabilities, we impose aij (67) = 0if |07,| >
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A% or |07, > Alf. The same constraint can be applied to vertical transition proba-
bilities. Similarly to the windowing parameters, while the A’s should be input depen-
dent, they were constant in our system. After preliminary experiments, A’s were set
to 8 pixels which limited the number of horizontal or vertical transition probabilities
going out of a state to 5 x 5 = 25.

e beam search: the idea is to prune unlikely paths during the forward-backward algorithm
[27]. During the forward pass, at each position (¢,7) all o values that fall more than
the beam width below the maximum « value at that position are ignored, i.e. set to
zero. Then, during the backward pass, § values are computed only if their associated
a value is greater than zero. The beam size was set to 100.

The training and decoding algorithms based on T-HMMs are efficient as, once Gabor features
are extracted, our non-optimized code compares two face images in less than 15 milliseconds
on a 2 GHz Pentium 4 with 512M RAM.

We assume that E;’f = 3F, 5;”]-’“ = 0F; and w;]k = wf; to reduce the number of
parameters to estimate. To train single Gaussian mixtures, we first align approximately Fr
and Fgo and we match each block in Fr with the corresponding block in Fg. As for the
transition probabilities, they are initialized uniformly. Then ¥’s and a;,;’s are re-estimated.
To train multiple Gaussians per mixture we used an iterative splitting/retraining strategy
inspired by the vector quantization algorithm [28, 27].

We measured the impact of using multiple Gaussian mixtures to weight the different
parts of the face and using multiple horizontal and vertical transitions matrices to model
the elastic properties of the various parts of the face. In both cases, we used face symmetry
to reduce the number of parameters to estimate. Hence, we tried one mixture for the whole
face (£f; = ¥, 6F; = 6% and wf; = w") and one mixture for each position (using face
symmetry, it resulted in 4 x 7 = 28 mixtures). We tried one horizontal and one vertical
transition matrices for the whole face and one horizontal and one vertical transition matrices
at each position (using face symmetry, it resulted in 3 x 7 = 21 horizontal and 4 x 6 = 24
vertical transition matrices). This made four test configurations. The performance was
drawn on Fig. 4 as a function of the number of Gaussians per mixture.
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Figure 4: Performance of the proposed algorithm.

While applying weights to different parts of the face provides a significant increase of the
performance, modeling the various elasticity properties of the face had a limited impact and
resulted in marginal improvements. The best performance is 96.0% identification rate. We
performed a McNemar’s test of significance to determine whether the difference in perfor-
mance between Fisherfaces and the proposed approach is statistically significant [29]. Let
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K be the number of faces on which only one algorithm made an error (K = 26) and let
M be the number of faces on which the proposed algorithm was correct while Fisherfaces
made an error (M = 6). The probability that the difference in performance between these
algorithms would arise by chance is P = 2% | (X) (%)K = 0.009, which means we are
99% confident this difference is significant.

It is also interesting to compare our novel approach to EGM. As stated in section 4.2,
we think that the main advantages of our novel approach are 1) in the use of the well-
developed T-HMM framework which provides efficient formulas to compute P(Fr|Fg, M)
and to estimate all the parameters of M and 2) in the use of a shared deformable model of
the face. Therefore, we will compare the benefits of these two improvements independently.
Firstly, we can replace the T-HMM scoring with the SA scoring which is mostly used in the
EGM framework.The iterative elastic matching step is generally stopped after a pre-defined
number of iterations N have failed to increase the score. We fixed this figure N so that
the amount of computation required by the SA scoring would be similar to the amount
of computation required by the T-HMM scoring. We get approximately a 2.0% absolute
increase of the performance for our best system with 16 Gaussians per mixture when we
use the T-HMM scoring rather than the SA scoring which indicates that the former scoring
procedure is more robust. Secondly, if we did not assume a shared transformation model,
as we only have one image per person at enrollment time, we would not be able to train one
set of parameters per person as is usually done in the EGM framework. Thus, in this case,
a upper bound for the performance of EGM is the performance of our system in the simple
case where we use one Gaussian mixture for the whole face, with a single Gaussian in the
mixture, and where there is for the whole face one unique transition probability which is
separable and parametric (c.f. 4.2). The identification rate of such a system is approximately
84.0%, far below the performance of our best system with 16 Gaussians per mixture (c.f.
Fig. 4).

5.5. Analysis

Finally we visualize which parts of the face are the least variable, and thus, considered by
our system the most reliable for face recognition (c.f. Fig. 5 (a)), and which parts are the
most elastic (c.f. Fig 5 (b)-(c)). The analysis was done on the system with 28 mixtures, 21
horizontal transition probabilities and 24 vertical transition probabilities. In the case where
there is only 1 GpM, log |E;Jl| is a simple measure of local variability: the greater is this
value, the fewer variability a face exhibits around position (4,7). It is interesting to note
that the upper part of the face exhibits less variability than the lower part and thus has
a higher contribution during identification, which is consistent with other findings [2]. To
visualize the elasticity information we represented the horizontal, resp. vertical, parametric
transition probabilities as vectors: (7%, aijy), resp. (o7, any)

6. FUTURE WORK

A first improvement was suggested in section 4.1. In our current implementation, we com-
pute the distance between a template image and a query image using a face transformation
model. In the case where we have multiple template images for person P, we should combine
them into a single face model M, (this would require a new formula for the face dependent
part of the mean m ;). Hence we should model a transformation between a face model M,
and a query image Fq. If A is the set of parameters of the transformation model, we should
then estimate: P(M,|Fqg,A).

A second possible improvement would be to use a discriminative criterion rather than
a Maximum Likelihood (ML) criterion to train the parameters of the face transformation
model. If we assume that our HMM models perfectly the face transformation between
faces of the same person and if we have infinite training data, then ML estimation can be
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shown to be optimal. However, as the underlying transformation is not a true HMM and
as training data is limited , other training objective functions should be considered. During
ML training, pairs of face images corresponding to the same individual were presented to
our system and model parameters were adjusted to increase the likelihood of the template
images, knowing the query images and the model parameters without taking into account the
probability of other possible faces. In contrast to ML estimation, discriminative approaches
such as Minimum Classification Error (MCE) [30, 31] or Maximum Mutual Information
Estimation (MMIE) [32, 33] would consider competing faces to reduce the probability of
misclassification.

Although we have only presented face identification results, we should consider the ex-
tension of this work to face verification. While the first idea would be simply to threshold
the score (P(Fg| My, A) > 6) this approach is known to lack robustness when there is a
mismatch between training and test conditions [34]. Generally, a likelihood normalization
of the following form has to be performed:

P(]:Q|Mﬁa)‘)
Mp is an anti-face model for individual P and P(Fg|Mjp, ) is the likelihood that Fg
belongs to an impostor. Two types of anti models are generally used: Background Model
Set (BMS), where the set of background model for each client is selected from a pool of
impostor models, and Universal Background Model (UBM), where a unique background
model is trained using all the impostor data [34, 35]. While the latter approach usually
outperforms the first one, both score normalization methods should be tested on our novel
approach.

While we showed that our system could model with great accuracy facial expressions
with local geometric transformations, it is clear that geometric transformations cannot grab
certain types of variability such as illumination variations which are known to greatly affect
the performance of a face recognition system. In our system, small variations in illumination
are compensated by Gabor features and the feature normalization step (c.f. section 5.2).
However Gabor features, even combined with feature normalization, cannot fully compensate
for large variations in illumination due, for instance, to the location of the light source.
Hence, the idea would be to use feature transformations as suggested in section 2.2. Our
model of face transformation would thus not only compensate for variations due to facial
expressions but also for changes in illumination conditions.

Finally, although our novel approach was tested on a face recognition task, we would like
to outline that it was designed for the more general problem of content based image retrieval
and it has the potential to be extended to other biometrics such as fingerprint recognition.
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7. SUMMARY

We presented a novel general approach for content based image retrieval and successfully
specialized it to face recognition. In our framework, the stochastic source of the pattern clas-
sification system, which is a 2-D HMM, does not directly model faces but a transformation
between faces of the same person. We also introduced a new framework for approximating
the computationally intractable 2-D HMMs using Turbo-HMMs (T-HMMs). T-HMMs are
another major contribution of this paper and one of the keys of the success of our approach.
We compared conceptually the proposed approach to two different face recognition algo-
rithms. We presented experimental results showing that our novel algorithm significantly
outperforms two popular face recognition algorithms: Eigenfaces and Fisherfaces. Also, a
preliminary comparison of our probabilistic model of face transformation with the EGM
approach showed great promise. However, to draw more general conclusions on the relative
performance of approaches which model a face (such as Eigenfaces and Fisherfaces) and
approaches which model the relation between face images (such as EGM and our novel ap-
proach), we would have to carry out more experiments but also to consider other algorithms
for both classes of pattern classification methods.
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