
Tagging English text with a probabilistic model

Bernard Merialdo

August 10th, 1993



This work was carried out while the author was a visitor of the Continu-
ous Speech Recognition group, IBM T.J. Watson Research Center, Yorktown
Heights, NY (USA).

Part of the material included in this work has been presented at the
IEEE International Conference on Acoustics, Speech and Signal Processing,
Toronto (Canada), May 1991.

Abstract.

In this paper we present some experiments on the use of a probabilistic model
to tag English text, i.e. to assign to each word the correct tag (part of speech)
in the context of the sentence. The main novelty of these experiments is the
use of untagged text in the training of the model. We have used a simple
triclass Markov model and are looking for the best way to estimate the
parameters of this model, depending on the kind and amount of training
data provided. Two approaches in particular are compared and combined:

� to use text that has been tagged by hand and compute relative fre-
quency counts,

� to use text without tags and train the model as a hidden Markov
process, according to a Maximum Likelihood principle.

Experiments show that the best training is obtained by using as much tagged
text as possible. They also show that Maximum Likelihood training, the pro-
cedure which is routinely used to estimate Hidden Markov Models param-
eters from training data, will not necessarily improve the tagging accuracy.
In fact, it will generally degrade this accuracy, except when only a limited
amount of hand tagged text is available.

1. Introduction

A lot of e�ort has been devoted in the past to the problem of tagging text,
i.e. assigning to each word the correct tag (part of speech) in the context of
the sentence. Two main approaches have generally been considered:

� rule-based [Klein 63, Brodda 82, Paulussen 92, Brill 90],

� probabilistic [Bahl 76, Debili 77, Stolz 65, Marshall 83, Leech 83, Derouault 86,
DeRose 88, Church 89, Beale 88, Marcken 90, Cutting 92].

1



More recently, some work have been proposed using neural networks
[Benello 89, Nakamura 89].

Through these di�erent approaches, some common points have emerged:

� For any given word, only a few tags are possible, a list of which can
be found either in the dictionary or through a morphological analysis
of the word.

� When a word has several possible tags, the correct tag can generally
be chosen from the local context, using contextual rules which de�ne
the valid sequences of tags. These rules may be given priorities so that
a selection can be made even when several rules apply.

These kinds of considerations �t nicely inside a probabilistic formulation
of the problem, which o�ers the following advantages:

� a sound theoretical framework is provided,

� the approximations are clear,

� the probabilities provide a straightforward way to disambiguate,

� the probabilities can be estimated automatically from data.

In this paper we present a particular probabilistic model, the triclass
model, and results from experiments involving di�erent ways to estimate its
parameters, with the intention of maximizing the ability of the model to tag
text accurately. In particular, we are interested in a way to make the best
use of untagged text in the training of the model.

2. The problem of tagging

We suppose that the user has de�ned a set of tags (attached to words).
Consider a sentence W = w1w2:::wn, and a sequence of tags T = t1t2:::tn, of
the same length. We call the pair (W;T ) an alignment. We say that word
wi has been assigned the tag ti in this alignment.

We assume that the tags have some linguistic meaning for the user, so
that among all possible alignments for a sentence there is a single one which
is correct from a grammatical point of view.

A tagging procedure is a procedure � which selects a sequence of tags
(and so de�nes an alignment) for each sentence.

� :W ! T = �(W )

2



There are (at least) two measures for the quality of a tagging procedure:

� at sentence level

perfS(�) = percentage of sentences correctly tagged

� at word level

perfW (�) = percentage of words correctly tagged

In practice, performance at sentence level is generally lower than perfor-
mance at word level, since all the words have to be tagged correctly for the
sentence to be tagged correctly.

The standard measure used in the literature is performance at word level
and this is the one considered here.

3. Probabilistic formulation

In the probabilistic formulation of the tagging problem we assume that the
alignments are generated by a probabilistic model according to a probability
distribution:

p(W;T )

In this case, depending on the criterion that we choose for evaluation,
the optimal tagging procedure is as follows:

� for evaluation at sentence level, choose the most probable sequence of
tags for the sentence

�(W ) =
argmax

T
p(T=W ) =

argmax
T

p(W;T )

We call this procedure Viterbi tagging. It is achieved using a dy-
namic programming scheme.

� for evaluation at word level, choose the most probable tag for each
word in the sentence

�(W )i =
argmax

t
p(ti = t=W ) =

argmax
t

X

T :ti=t

p(W;T )

where �(W )i is the tag assigned to word wi by the tagging procedure �
in the context of the sentence W . We call this procedure Maximum

Likelihood (ML) tagging.

3



It is interesting to note that the most commonly used method is Viterbi
tagging (see [DeRose 88, Church 89]) although it is not the optimal method
for evaluation at word level. The reasons for this preference are presumably
that:

� Viterbi tagging is simpler to implement than ML tagging and requires
less computation (although they both have the same asymptotic com-
plexity),

� Viterbi tagging provides the best interpretation for the sentence, which
is linguistically appealing,

� ML tagging may produce sequences of tags that are linguistically im-
possible (because the choice of a tag depends on all contexts taken
together).

However, in our experiments, we will show that Viterbi and ML tagging
result in very similar performance.

Of course, the real tags have not been generated by a probabilistic model
and, even if they had been, we would not be able to determine this model
exactly because of practical limitations. Therefore the models that we con-
struct will only be approximations of an ideal model that does not exist.
It so happens that despite these assumptions and approximations, these
models are still able to perform reasonably well.

4. The triclass model

We have the mathematical expression:

p(W;T ) =
nY

i=1

p(wi=w1t1:::wi�1ti�1ti):p(ti=w1t1:::wi�1ti�1)

The triclass (or tri-POS [Derouault 86], or tri-Ggram [Codogno 87], or
HK) model is based on the following approximations:

� The probability of the tag given the past depends only on the last two
tags

p(ti=w1t1:::wi�1ti�1) = h(ti=ti�2ti�1)

� The probability of the word given the past depends only on its tag

p(wi=w1t1:::wi�1ti�1ti) = k(wi=ti)

4



(the name HK model comes from the notation chosen for these probabilities).
In order to de�ne the model completely we have to specify the values of

all h and k probabilities. If NW is the size of the vocabulary and NT the
number of di�erent tags, then there are:

� NT :NT :NT values for the h probabilities,

� NW :NT values for the k probabilities.

Also, since all probability distributions have to sum to one, there are:

� NT :NT equations to constrain the values for the h probabilities,

� NT equations to constrain the values for the k probabilities.

The total number of free parameters is then:

(NW � 1):NT + (NT � 1):NT :NT :

Note that this number grows only linearly with respect to the size of the vo-
cabulary, which makes this model attractive for very large size vocabularies.

The triclass model by itself allows any word to have any tag. However,
if we have a dictionary which speci�es the list of possible tags for each word,
we can use this information to constrain the model: if t is not a valid tag
for the word w, then we are sure that

k(w=t) = 0

There are thus at most as many non-zero values for the k probabilities as
there are possible pairs (word, tag) allowed in the dictionary.

5. Training the triclass model

We consider two di�erent types of training:

� Relative Frequency (RF) training,

� Maximum Likelihood (ML) training, which is done via the Forward-
Backward (FB) algorithm.

5



5.1. Relative frequency training

If we have some tagged text available we can compute the number of times
N(w; t) a given word w appears with the tag t, and the number of times
N(t1; t2; t3) that the sequence (t1; t2; t3) appears in this text. We can then
estimate the probabilities h and k by computing the relative frequencies of
the corresponding events on this data:

hrf (t3=t1; t2) = f(t3=t1; t2) =
N(t1; t2; t3)

N(t1; t2)

krf(w=t) = f(w=t) =
N(w; t)

N(t)

These estimates assign a probability of zero to any sequence of tags that did
not occur in the training data. But such sequences may occur if we consider
other texts. A probability of zero for a sequence creates problems because
any alignment that contains this sequence will get a probability of zero.
Therefore, it may happen that, for some sequences of words, all alignments
get a probability of zero and the model becomes useless for such sentences.

To avoid this, we interpolate these distributions with uniform distribu-
tions, i.e. we consider the interpolated model de�ned by:

hinter(t3=t1; t2) = �:hrf(t3=t1; t2) + (1� �):hunif (t3=t1; t2)

kinter(w=t) = �:krf(w=t) + (1� �):kunif(w=t)

where

hunif (t3=t1; t2) =
1

NT

kunif (w=t) =
1

number of words that have the tag t

The interpolation coe�cient � is computed using the deleted interpolation
algorithm [Jelinek 80] (it would also be possible to use two coe�cients, one
for the interpolation on h, one for the interpolation on k). The value of this
coe�cient is expected to increase if we increase the size of the training text,
since the relative frequencies should be more reliable. This interpolation
procedure is also called "smoothing".

Smoothing is performed as follows:

� some quantity of tagged text from the training data is not used in
the computation of the relative frequencies. It is called the "held-out"
data.

6



� the coe�cient � is chosen to maximize the probability of emission of
the held-out data by the interpolated model.

� this maximization can be performed by the standard Forward-Backward
(FB) or Baum-Welch algorithm [Baum 72, Jelinek 76, Bahl 83], by
considering � and 1 � � as the transition probabilities of a Markov
model.

It can be noted that more complicated interpolation schemes are possible.
For example, di�erent coe�cients can be used depending on the count of
(t1; t2), with the intuition that relative frequencies can be trusted more when
this count is high. Another possibilitity is to interpolate also with models
of di�erent orders, such as hrf (t3=t2) or hrf (t3).

Smoothing can also be achieved with procedures other than interpola-
tion. One example is the "backing-o�" strategy proposed by Katz [Katz 87].

5.2. Maximum Likelihood training

Using a triclass model M it is possible to compute the probability of any
sequence of words W according to this model:

pM(W ) =
X

T

pM(W;T )

where the sum is taken over all possible alignments. The Maximum Like-
lihood (ML) training �nds the model M that maximizes the probability of
the training text:

maxM
Y

W

pM(W )

where the product is taken over all the sentencesW in the training text. This
is the problem of training a hidden Markov model (it is hidden because the
sequence of tags is hidden). A well-known solution to this problem is the
Forward-Backward (FB) or Baum-Welch algorithm [Baum 72, Jelinek 76,
Bahl 83], which iteratively constructs a sequence of models which improve
the probability of the training data.

The advantage of this approach is that it does not require any tagging
of the text, but makes the assumption that the correct model is the one in
which tags are used to best predict the word sequence.

7



6. Tagging algorithms

The Viterbi algorithm is easily implemented using a dynamic programming
scheme [Bellman 57]. The Maximum Likelihood algorithm appears more
complex at �rst sight, because it involves computing the sum of the prob-
abilities of a large number of alignments. However, in the case of a hidden
Markov model, these computations can be arranged in a way similar to the
one used during the FB algorithm, so that the overall amount of computa-
tion needed becomes linear in the length of the sentence [Baum 72].

7. Experiments

The main objective of this paper is to compare RF and ML training. This
is done in Section 7.2 Basic experiments. We also take advantage of the
environment that we have set up to perform other experiments, described in
Section 7.3 Extra experiments, that have some theoretical interest, but did
not bring any improvement in practice. One concerns the di�erence between
Viterbi and ML tagging, the other concerns the use of constraints during
training.

We shall begin by describing the textual data that we are using, before
presenting the di�erent tagging experiments using these various training and
tagging methods.

7.1. Text data

We use the "treebank" data described in [Beale 88]. It contains 42,186
sentences (about 1 million words) from the Associated Press. These sen-
tences have been tagged manually at the Unit for Computer Research on
the English Language (University of Lancaster, UK), in collaboration with
IBM UK (Winchester) and the IBM Speech Recognition group in Yorktown
Heights (USA). In fact, these sentences are not only tagged but also parsed.
However, we do not use the information contained in the parse.

In the treebank 159 di�erent tags are used. These tags were projected
on a smaller system of 76 tags designed by Evelyne Tzoukermann and Peter
Brown (see Appendix ). The results quoted in this paper all refer to this
smaller system.

We built a dictionary, which indicates the list of possible tags for each
word, by taking all the words that occur in this text and, for each word,
all the tags that are assigned to it somewhere in the text. In some sense,

8



Training data Interpolation Nb of errors % correct
(sentences) coe�cient � (words) tags

0 .0 10498 77.0

100 .48 4568 90.0

2000 .77 2110 95.4

5000 .85 1744 96.2

10000 .90 1555 96.6

20000 .92 1419 96.9

all .94 1365 97.0

Table 1: RF training on N sentences, Viterbi tagging

this is an optimal dictionary for this data, since a word will not have all its
possible tags (in the language), but only the tags that it actually had within
the text.

We separated this data into two parts:

� a set of 40,186 tagged sentences, the training data, which is used to
build the models,

� a set of 2,000 tagged sentences (45,583 words), the test data, which
is used to test the quality of the models.

7.2. Basic Experiments

RF training, Viterbi tagging

In this experiment, we extracted N tagged sentences from the training data.
We then computed the relative frequencies on these sentences and built a
"smoothed" model using the procedure described previously. This model
was then used to tag the 2,000 test sentences. We experimented with di�er-
ent values of N, for each of which we indicate the value of the interpolation
coe�cient and the number and percentage of correctly tagged words. Re-
sults are indicated in Table 1, below.

As expected, as the size of the training increases, the interpolation coef-
�cient increases and the quality of the tagging improves.

When N = 0, the model is made up of uniform distributions. In this
case, all alignments for a sentence are equally probable, so that the choice

9



of the correct tag is just a choice at random. However, the percentage of
correct tags is relatively high (more than three out of four) because:

� almost half of the words of the text have a single possible tag, so that
no mistake can be made on these words,

� about a quarter of the words of the text have only two possible tags
so that, on the average, a random choice is correct every other time.

Note that this behaviour is obviously very dependent on the system of tags
that is used.

It can be noted that reasonable results are obtained quite rapidly. Using
2,000 tagged sentences (less than 50,000 words), the tagging error rate is
already less than 5%. Using 10 times as much data (20,000 tagged sentences)
provides an improvement of only 1.5%.

ML training, Viterbi tagging

In ML training we take all the training data available (40,186 sentences) but
we only use the word sequences, not the associated tags (except to compute
the initial model, as will be described later). This is possible since the FB
algorithm is able to train the model using the word sequence only.

In the �rst experiment we took the model made up of uniforms distri-
butions as the initial one. The only constraints in this model came from
the values k(w=t) which were set to zero when the tag t was not possible
for the word w (as found in the dictionary). We then ran the FB algorithm
and evaluated the quality of the tagging. The results are shown in Figure 1.
(Perplexity is a measure of the average branching factor for probabilistic
models).

This �gure shows that ML training both improves the perplexity of the
model and reduces the tagging error rate. However, this error rate remains
at a relatively high level, higher than that obtained with a RF training on
100 tagged sentences.

Having shown that ML training is able to improve the uniform model,
we then wanted to know if it was also able to improve more accurate models.
We therefore took as the initial model each of the models obtained previously
by RF training and, for each one, performed ML training using all of the
training word sequences. The results are shown graphically in Figure 2 and
numerically in Table 2.

These results show that, when we use few tagged data, the model ob-
tained by relative frequency is not very good and Maximum Likelihood

10



10

12

14

16

18

20

22

24

0 5 10 15 20 25 30 35 40 45 50

Er
ro
r 
ra
te

Iterations

440

460

480

500

520

540

560

580

600

0 5 10 15 20 25 30 35 40 45 50

Pe
rp
le
xi
ty

Iterations

Figure 1: ML Training from uniform distributions

11



0

2

4

6

8

10

12

0 2 4 6 8 10

E
r
r
o
r
 
r
a
t
e

Iterations

Figure 2: ML training from various initial points (top line corresponds to
N=100, bottom line to N=all)

12



Number of tagged sentences used for the initial model

0 100 2000 5000 10000 20000 all

Iter Correct tags (% words) after ML on 1M words

0 77.0 90.0 95.4 96.2 96.6 96.9 97.0

1 80.5 92.6 95.8 96.3 96.6 96.7 96.8

2 81.8 93.0 95.7 96.1 96.3 96.4 96.4

3 83.0 93.1 95.4 95.8 96.1 96.2 96.2

4 84.0 93.0 95.2 95.5 95.8 96.0 96.0

5 84.8 92.9 95.1 95.4 95.6 95.8 95.8

6 85.3 92.8 94.9 95.2 95.5 95.6 95.7

7 85.8 92.8 94.7 95.1 95.3 95.5 95.5

8 86.1 92.7 94.6 95.0 95.2 95.4 95.4

9 86.3 92.6 94.5 94.9 95.1 95.3 95.3

10 86.6 92.6 94.4 94.8 95.0 95.2 95.2

Table 2: ML training from various initial points

training is able to improve it. However, as the amount of tagged data in-
creases, the models obtained by Relative Frequency are more accurate and
Maximum Likelihood training improves on the initial iterations only, but
after deteriorates. If we use more than 5,000 tagged sentences, even the �rst
iteration of ML training degrades the tagging. (This number is of course
dependent on both the particular system of tags and the kind of text used
in this experiment).

These results call for some comments. ML training is a theoretically
sound procedure, which is routinely and successfully used in speech recogni-
tion to estimate the parameters of hidden Markov models that describe the
relations between sequences of phonemes and the speech signal. Although
ML training is guaranteed to improve perplexity, perplexity is not neces-
sarily related to tagging accuracy, and it is possible to improve one while
degrading the other. Also, in the case of tagging, the relations between
words and tags are much more precise than the relations between phonemes
and speech signals (where the correct correspondence is harder to de�ne pre-
cisely). Some characteristics of ML training, such as the e�ect of smoothing
probabilities, are probably more suited to speech than to tagging.

13



Tagging errors out of 45,583 words

Iter. Viterbi ML Vit. - ML

0 % nb % nb nb

0 97.01 1365 97.01 1362 3

1 96.76 1477 96.75 1480 -3

2 96.44 1623 96.47 1607 16

3 96.23 1718 96.23 1719 -1

4 96.00 1824 96.02 1812 12

5 95.82 1906 95.85 1892 14

6 95.66 1978 95.68 1970 8

7 95.51 2046 95.54 2031 15

8 95.39 2100 95.42 2087 13

9 95.30 2144 95.31 2140 4

10 95.21 2183 95.22 2177 6

Table 3: Viterbi vs ML tagging

7.3. Extra Experiments

Viterbi vs ML tagging

For this experiment we considered the initial model built by RF training
over the whole training data and all the successive models created by the
iterations of ML training. For each of these models we performed Viterbi
tagging and ML tagging on the same test data, then evaluated and compared
the number of tagging errors produced by these two methods. The results
are shown in Table 3.

The models obtained at di�erent iterations are related, so one should
not draw strong conclusions about the de�nite superiority of one tagging
procedure. However, the di�erence in error rate is very small, and shows
that the choice of the tagging procedure is not as critical as the kind of
training material.

Constrained ML training

Following a suggestion made by F. Jelinek, we investigated the e�ect of con-
straining the ML training by imposing constraints on the probabilities. This
idea comes from the observation that the amount of training data needed to

14



Tagging errors out of 45,583 words

Iter. ML tw-c. ML

0 % nb % nb

0 97.01 1365 97.01 1365

1 96.76 1477 96.87 1427

2 96.44 1623 96.71 1501

3 96.23 1718 96.57 1562

4 96.00 1824 96.43 1626

5 95.82 1906 96.36 1661

6 95.66 1978 96.29 1690

7 95.51 2046 96.22 1723

8 95.39 2100 96.18 1741

9 95.30 2144 96.12 1768

10 95.21 2183 96.09 1784

Table 4: Standard ML vs tw-constrained ML training

properly estimate the model increases with the number of free parameters of
the model. In the case of little training data, adding reasonable constraints
on the shape of the models that are looked for reduces the number of free
parameters and should improve the quality of the estimates.

We tried two di�erent constraints:

� The �rst one keeps p(t=w) �xed if w is a frequent word, in our case
one of the 1,000 most frequent words. We call it tw-constraint. The
rationale is that if w is frequent, the relative frequency provides a good
estimate for p(t=w) and the training should not change it.

� The second one keeps the marginal distribution p(t) constant and is
based on a similar reasoning. We call it t-constraint.

tw-constraint

The tw-constrained ML training is similar to the standard ML training, ex-
cept that the probabilities p(t=w) are not changed at the end of an iteration.

The results in Table 4 show the number of tagging errors when the model
is trained with the standard or tw-constrained ML training. They show that
the tw-constrained ML training still degrades the RF training, but not as

15



Tagging errors out of 45,583 words (biclass model)

Iter. ML t-c. ML

0 % nb % nb

0 96.87 1429 96.87 1429

1 96.51 1592 96.54 1576

2 96.18 1743 96.23 1718

3 96.00 1824 96.03 1810

4 95.84 1896 95.90 1871

5 95.67 1972 95.77 1928

6 95.52 2044 95.59 2009

7 95.42 2087 95.50 2051

8 95.33 2129 95.42 2087

9 95.24 2171 95.34 2126

10 95.18 2196 95.30 2141

Table 5: Standard ML vs constrained ML training

quickly as the standard ML. We have not tested what happens when smaller
training data is used to build the initial model.

t-constraint

This constraint is more di�cult to implement than the previous one because
the probabilities p(t) are not the parameters of the model, but a combination
of these parameters. With the help of R. Polyak we have designed an iter-
ative procedure that allows the likelihood to be improved while preserving
the values of p(t). We do not have su�cient space to describe this procedure
here. Due to its greater computational complexity, we have only applied it
to a biclass model, i.e. a model where

p(ti=w1t1:::wi�1ti�1) = h(ti=ti�1)

The initial model is estimated by relative frequency on the whole training
data and Viterbi tagging is used.

As in the previous experiment, the results in Table 5 show the number of
tagging errors when the model is trained with the standard or t-constrained
ML training. They show that the t-constrained ML training still degrades
the RF training, but not as quickly as the standard ML. Again, we have not

16



tested what happens when smaller training data is used to build the initial
model.

8. Conclusion

The results presented in this paper show that estimating the parameters of
the model by counting relative frequencies over a very large amount of hand
tagged text lead to the best tagging accuracy.

Maximum Likelihood training is guaranteed to improve perplexity, but
will not necessarily improve tagging accuracy. In our experiments, ML train-
ing degrades the performance unless the initial model is already very bad.

The preceding results suggest that the optimal strategy to build the best
possible model for tagging is the following:

� get as much tagged (by hand) text as you can a�ord,

� compute the relative frequencies from this data to build an initial
model M0,

� get as much untagged text as you can a�ord,

� starting from M0, perform the Forward-Backward iterations. At each
iteration, evaluate the tagging quality of the new model Mi on some
held-out tagged text. Stop either when you have reached a preset num-
ber of iterations or the modelMi performs worse thanMi�1, whichever
occurs �rst.

Acknowledgement

I would like to thank Peter Brown, Fred Jelinek, John La�erty, Robert Mer-
cer, Salim Roukos and other members of the Continuous Speech Recognition
group for the fruitful discussions I has with them throughout this work. I
also want to thank one of the referees for his judicious comments.

List of tags used

$* possessive marker ('s, ')

APP$* possessive adjectives (my, your, our)

17



AT* article (the, a, no)

BOUNDARY TAG end-of-sentence marker

CCF* coordinating conjunction (and, or, but, so, yet, then)

CS* subordinating conjunction (if, because, unless)

CT* that or whether as subordinating conjunctions

D* determiner (all, any, enough)

D*Q wh-determiner (which, what, whose)

D*R comparative plural after-determiner (less, more)

D*1 determiner singular (this, that, little, much, former)

D*2 determiner plural (these, few, several, many)

DAT* superlative determiner (least, most)

EX* existential there

FW* foreign words (ipso, facto)

I* preposition (general)

ICS* preposition that can also be used as a conjunction (since, after)

IF* the preposition for

IO* the preposition of

J* adjective (small, pretty)

J*R comparative adjective (smaller, prettier)

J*T superlative adjective (prettiest, nicest)

LE* leading coordinator (both, either, neither)

M* cardinal number

MD* ordinal number (�rst, second)

N* noun without number (english)

18



N*1 singular noun (cat, man)

N*2 plural noun (cats, men)

NPR* proper noun (paris, fred)

NR* noun/adverb of direction (south, west) or time (now, tomorrow, tues-
day)

P* non-nominative pronoun (none, anyone, oneself)

P*Q who, whom, whoever, whomever

PNX1* personal pronoun re
exive (himself)

PN1* inde�nite pronoun (anyone, anybody)

PP$* possessive pronoun (mine, yours)

PP*O personal pronoun object (me, him)

PP*S personal pronoun subject (I, you, we)

PP*S3 personal pronoun subject 3rd person singular (he, she)

PUNCT1* end of sentence (. ! ? { )

PUNCT2* non terminal ponctuation (, : ;)

QUOT* quote

R* adverb (here, slowly)

R*Q wh-adverb (where, when, why, how, whenever, wherever)

R*R comparative adverb (better, longer)

RG* degree adverb (very, so, too, enough, indeed)

RGQ* wh-degree adverb (how)

RGR* comparative degree adverb (more, less, worse)

RP* adverb that can also serve as a preposition

SIGN* sign ($, c., ct, %)

19



TO* to as pre-in�nitive

UH* interjection (gee)

VBDR* were

VBDZ* was

VBG* being

VBI* in�nitive form of be and imperative

VBM* am

VBN* been

VBR* are

VBZ* is

VDG* doing

VDN* past participial form of do (did)

VDPAST* past form of do (did)

VD0* do as a conjugated form and in�nitive

VD0Z* does as a conjugated form

VHG* having

VHN* past participial form of have (had)

VHPAST* past form of have (had)

VH0* have as a conjugated form

VH0Z* has as a conjugated form

VM* modals (can, would, ought,used)

VVG* non-aux verb in -ing

VVN* past participial form of non-aux verb

VVPAST* preterit of non-aux verb

20



VV0* non-third-person-singular form of non-aux verb and in�nitive

VV0Z* third-person-singular form of non-aux verb

XX* not

References

[Bahl 83] Bahl, Lalit R.; Jelinek, Frederick and Mercer, Robert L. 1983
A Maximum Likelihood Approach to Continuous Speech Recognition
IEEE Transactions on PAMI 5(2)

[Bahl 76] Bahl, Lalit R. and Mercer, Robert L. 1976 Part of Speech Assign-
ment by a Statistical Decision Algorithm IEEE International Sympo-
sium on Information Theory Ronneby (Sweden): 88-89

[Baum 72] Baum, L. E. 1972 An Inequality and Associated Maximiza-
tion Technique in Statistical Estimation for Probabilistic Function of
Markov Processes In: Inequality, vol III: 1-8

[Beale 85] Beale, A. D. 1985 A probabilistic approach to grammatical anal-
ysis of written English by computer 2nd conference of the European
Chapter of the ACL Geneva, Switzerland

[Beale 88] Beale, A. D. 1988 Lexicon and grammar in probabilistic tagging
of written English 26th Annual Meeting of the ACL Bu�alo, NY: 211-
216

[Bellman 57] Bellman, R. E. 1957 Dynamic programming Princeton Univer-
sity Press Princeton, NJ

[Benello 89] Benello, J.; Mackie, A. W. and Anderson, J. A. 1989 Syntactic
category disambiguation with neural networks Computer Speech and
Language 3 203-217

[Brill 90] Brill, E.; Magerman, D.; Marcus, M. and Santorini, B. 1990 De-
ducing linguistic structure from the statistics of large corpora DARPA
Speech and Natural Language workshop Hidden Valley, Pa 275-282

[Brodda 82] Brodda, Benny 1982 Problems with Tagging and a Solution
Nordic Journal of Linguistics 93-116

21



[Church 89] Church, Kenneth W. 1989 A stochastic Parts Program Noun
Phrase Parser for Unrestricted Text IEEE Proceedings of the ICASSP
Glasgow (Scotland) 695-698

[Codogno 87] Codogno, M.; Fissore, L.; Martelli, A.; Pirani, G. and Volpi,
G. 1987 Experimental evaluation of Italian language models for large-
dictionary speech recognition European Conference on Speech Technol-
ogy Edinburgh (Scotland) 159-162

[Cutting 92] Cutting, D.; Kupiec, J.; Pedersen, J. and Sibun, P. 1992 A
practical part-of-speech tagger 3rd conference on applied language pro-
cessing Trento, Italy 133-140

[Debili 77] Debili, Fathi 1977 Traitements syntaxiques utilisant des matrices
de precedence frequentielles construites automatiquement par appren-
tissage PhD thesis in engineering Universite Paris 7, France

[DeRose 88] DeRose, S. 1988 Grammatical Category Disambiguation by
Statistical Optimization Computational Linguistics 14(1)

[Derouault 86] Derouault, Anne-Marie and Merialdo, Bernard 1986 Natural
Language Modeling for Phoneme-to-Text Transcription IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 8(6) 742-749

[Garside 85] Garside, R. and Leech, F. 1985 A probabilistic parser 2nd con-
ference of the European Chapter of the ACL Geneva, Switzerland

[Jelinek 76] Jelinek, Frederick 1976 Continuous Speech Recognition by Sta-
tistical Methods Proceedings of the IEEE 64 532-556

[Jelinek 80] Jelinek, Frederick and Mercer, Robert L. 1980 Interpolated Es-
timation of Markov Source Parameters from Sparse Data Workshop on
Pattern Recognition in Practice Amsterdam (Netherlands) Ed. North
Holland

[Katz 87] Katz, S. 1987 Estimation of Probabilities from Sparse Data for the
Language Model Component of a Speech Recognizer IEEE Transactions
on ASSP 34(3) 400-401

[Klein 63] Klein, S. and Simmons, R. F. 1963 A grammatical approach to
grammatical coding of English words JACM 10 334-347

22



[Leech 83] Leech, G.; Garside, R. and Atwell, E. 1983 The automatic Gram-
matical Tagging of the LOB Corpus Newletter of the International
Computer Archive of Modern English 7 13-33

[Marcken 90] de Marcken, C. G. 1990 Parsing the LOB corpus ACL annual
meeting Pittsburg, Pa 243-251

[Marshall 83] Marshall, Ian 1983 Choice of Grammatical Word-Class with-
out Global Syntactic Analysis: Tagging Words in the LOB Corpus
Computers and the Humanities 139-150

[Merialdo 91] Merialdo, Bernard 1991 Tagging text with a probabilistic
model IEEE Proceedings of the ICASSP Toronto

[Nakamura 89] Nakamura, M. and Shikano, K. A study of English word
category prediction based on neural networks IEEE Proceedings of the
ICASSP Glasgow (Scotland) 731-734

[Paulussen 92] Paulussen, H. and Martin, W. 1992 Dilemma-2: a
lemmatizer-tagger for medical abstracts 3rd conference on applied lan-
guage processing Trento, Italy 141-146

[Poritz 88] Poritz, Alan B. 1988 Hidden Markov Models: a Guided Tour
IEEE Proceedings of the ICASSP New-York 7-13

[Stolz 65] Stolz, W. S.; Tannenbaum, P. H. and Carstensen F. V. 1965 A
stochastic approach to the grammatical coding of English Communica-
tions of the ACM 8 399-405

23


