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Chapter 1

Features Selection

1.1 Introduction

In a pattern recognition task, a central role is played by feature selection. Select-
ing most important features has a double goal: reducing computational charges
and improving recognition rate (eliminating the most noisy features).

Feature selection algorithms belongs to two big families: filters and wrappers
that need class labels. Tn many applications, class labels are not available (e.g.
unlabeled speech recognition database) and other kind or algorithms must be
used.

In this report we first consider feature saliency model proposed in [1] and
[2] for mixture based clustering and then propose a bayesian framework base on
variational learning that enables parameter learning and model learning.






Chapter 2

Mixture Model with
Feature Selection

In this chapter we consider the model proposed in [1]. This model permits to
learn simultaneously parameters and features saliency in a mixture model.

2.1 Mixture Model

Let’s consider the following Gaussian Mixture Model:

K D

y) = Z%’p(ylﬁj) => a; [[ p(wl0:) (2.1)

Jj=1 =1

where the factorization is possible if we assume diagonal covariance matrix.
The model consists of K different components, each component 1s multivariate
gaussian, vector dimension is 1, 6;; is the model of the | —th vector component
in the j — th mixture component.

Feature selection problem consists in determining how relevant is the [ — th
component. The relevance is considered as the capacity of discriminate between
different mixture components; assuming ¢(y;|A;) the distribution of the I — th
feature regardless the mixture component it belongs to. If the [ — th feature
is irrelevant, it’s intuitively reasonable to assume p(y|6;) = ¢(w|6:) i.e. the
feature distribution in the j — th mixture component is identical to the total
distribution. Introducing a binary variable ¢; that indicates if the feature is
relevant (¢; = 1) or not (¢; = 0), it’s possible to write the model like:

= a; [Te(w10:0)? (a(w|n))'—* (2.2)

ji=1  i=1

Obviously in real data problems instead of determining the value of ¢ as a
binary variable, it’s more interesting to determine the “saliency” of a certain
feature. For this reason it’s possible to consider ¢ as an hidden variable and
define p; = P(¢; = 1). Tt can be demonstrated that using this assumption the



model can be written as:
K D
p) = a; [[(p@loi) + (1 = p)a(ulN)) (2.3)

j=1 =1

This formulation can be seen as a Hierarchical Mixture Model with two hidden
variables that indicates the mixture components and the feature saliency.

2.2 Learning Parameters

Given an unlabeled training set YV = (y1,...,yn) with ¥; = (i1, ..., ¥ip), the
problem is estimation of parameters of model 2.3 given by © = {a;, 8, A, pi }.
In [1] parameters learning is based on a Maximum Likelihood criterion:

N K D
© = argmaz log p(Y|©) = argmax »_log »_ o; [ [(ep(wl0i1)+(1—p1)a(wlN))
i=1 j=1 =1
(2.4)
Because of the fact that the model uses hidden variables an Expectation-Maximization
algorithm must be used.
The E-step consists consists in the following estimations:

aiji = P(or = 1,yulzi = j) = pip(wir|0ji) (2.5)
biji = P(é1 = 0,yulzi = j) = (1 — p)g(ya| ) (2.6)
ciji = Plyilzi = j) = aiji + biji (2.7)
. [0 H Ciil
’ YiaiIlicij

. a;q
uiji=P(er =1,z = jly;) = C]ll w;j (2.9)

ij
viji = P(o1 = 0,2 = jlyi) = wij — wiji (2.10)
Z vijt = P(gr=0yi) =1~ Zuijl (2.11)

J J

The M-step consists in the following parameters estimations:

Wi
;= & 2.12
J Zij wij ( )

P > Uiy
0:) = =——"— 2.13
() = S (213)

iy — p(050))?

7(03) = S i (2.14)
p) = % (2.15)

o) = 22 Z)(y - H(n))? -
"= > u%iugj vl Ziilum (2.17)



2.3 Model Selection

A serious problem in using GMM is that the number of mixture must be given.
If i1t does not match the “real” cluster number, parameter estimation may suffer
of many problems like overfitting or local maxima problems. A possible model
selection criterion is the Minimum Message Length (MMT)

It’s possible to obtain a criterion for joint parameters estimation and model
selection. In [1] it’s obtained the following criterion:

1
O = argmin{—log p(Y|©) + 5([( + D+ KDR+ DS)logn

R K D g D
+5 DD loglap) + ) > log (1—pi)} (2.18)
=1

j=11=1

where R and S are number of parameters in #;; and A;. In the proposed model
R =5 = 2. Criterion 2.18 can be rewritten as:

RD « g RK &
O = argmaz{logp(Y|0) — - Zlog =g Zlog (1=pi)— - Zlog o}
=1 =1 =1

(2.19)
which can be seen as a MAP estimate defining the following improper priors on
a; and pp:

K
pla, .., k) H ozj_RD/z (2.20)
=1

plpn) o< p P (1= pry =512 (2.21)
In the EM algorithm the update formula for a;; and p; becomes:
_ max()_;wi; — RD/2,0)
>y maz(3; wi; — RD/2,0)
A max(zij ui;; — KR/2,0)

= 2.23
P max(zij uiji — KR/2,0) + max(zij vij — S/2,0) ( )

aj

(2.22)

2.3.1 Pruning Model

An important point in using update formula 2.22 and 2.23 is the possibility of
pruning parameters. In fact if the initial model is initialized with a huge number
of gaussians, MML learning should detect the correct number of clusters pruning
extra gaussians.

Naturally when a; or p; go to zero, parameters number changes because
parameters relative to components j or feature [ can be discarded; it means
that criterion 2.18 must be modified in order to consider the right number of
parameters.

~ 1 1 1
O = argmin{—log p(Y|©) + 5([( 4+ D3+ K D1R+ D2S)logn

K Dy Da
+R/2> > log(ajp) +5/2> log(1—p)}  (2.24)
j=11=1 =1



where K denotes the current number of mixture components, D are fea-
tures for which p; > 0, Dy are features for which p; < 1, and D3 are features
for which 0 < p; < 1.

It’s now possible to modify equations 2.22 and 2.23 as follows:

max (>, wi; — RD1/2,0)

v, = 2.25

J Zj max (>, wi; — RD1/2,0) ( )

R max (>, wij — KIR/Q,O)

= TR é 50 (%)
max(y_;; i — K'R/2,0) + max (3, viji — S/2,0)

2.3.2 Component-wise EM

A problem outlined in [1] is the very hard pruning behavior in first EM step; in
fact if the imitial component number 1s too big the penalty term can be too hard
and all components are pruned out. To avoid this behavior, authors propose a
modification to the EM algorithm: mixture components are updated in turns
instead of in parallel. They refer to this modified EM algorithm as Component
Wise EM (CWEM) (see [1] for details).
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Chapter 3

Variational Bayesian
Feature Selection

Another efficient way for doing model selection consists in using Variational
Bayesian (VB) techniques. First application to gaussian mixture models was

proposed in [3].

Using VB learning offers a way for optimizing jointly parameters and model;
furthermore another key feature of VB learning is that it naturally prunes extra

degree of freedom. For an exhaustive review see [4]

3.1 Variational Bayesian Learning

Let’s consider the model 2.3:

D

K
yl@ = Za] H plop yl|9]1 + pllq(yll)‘l))
Jj=1 =1

where © = {a;, 6, A, pr }.
Let’s explicit gaussian distributions:

(v — pji)?
wlb;) = exp(———=—)
( J \/_O'Jl ( 20_‘%

q(uilh) = M)

exp(—
\/271'0'1 o 20'12

and their prior distributions:

p(©) = p(e)p(pr) [ plein)ppsilesi)pla)p(uleor)

gl

where

(3.1)



ploji) = T(bg, o

p(ujilos) = N(ulmo, Booji
p(o1) = T(bo, co

plulor) = N(p|mo, Boor

~— ' e

where T is a gamma distribution and N is a normal distribution.

LW o~~~ o~
: [SURUCRINIU)

© oo =1
= = I —

To learn optimal variational bayesian posterior EM algorithm can be applied.

3.1.1 E-step

Following formula implements the E-step:
_ = =1/2 1 T - 1
aiji = pro0;; exp(—5(y — i) oy — pj))exp(—57-)
2 Qﬁ]l
b — 55l 1 T 1
ijl = P10y 6$P(—§(y - ,Ul) O'l(y - /il))efp(—ﬁ)

where

logpio = ¥(m)—V(r+m)
logpn = ¥(r)—V(rp+m)
loga; = W(bj/2) —logcj + log2
loga; = V(b /2)—logc +log2
o = bj/cj
o = bi/a

where ¥ is the digamma function.

ciji = aiji + bijy
a; [ ciji

>0 I cij
@i

U] = ——W;j

j Wi
Cijl

Vijl = Wij — Uil

g vijlzl_g Uiji
J J

Wi =

where

log é&; = ¥(A Z/\k

3.1.2 M-step

(3.24)

Model parameters can be estimated using formula 2.12-2.17. Optimal parame-
ter posterior can be estimated because prior distributions belongs to conjugate

family.
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Let’s define

Naipha—j = g w;;
i

Nyho—to = g Us 51
i

Nyhoot1 = g Ly
i

Ny = g Uiji
i

Ny = g V341

if
It’s now possible to estimate posterior distributions:
q(a) = Dir(A)
q(pi) = Dir(m)

with
Aj = Ao+ Napha—j

Ti0 = To 4+ Nrhoto 711 = To + Nypootn

For means distributions:

q(pjileoji) = N(mji|Bjioji)
q(pulor) = N(my|Gioy)
where
mji = Nji pizi + Bomg
Nji+ B
Ny A+ Bomo
N+ S
Bj1 = Nji + o
B = Ny + Bo

For precision distributions:

q(oji) = T'(bj, cji)
q(o1) = T(bs, 1)

where

Nji Bo (pji — mo)?

bji = Njioj+ N+ o + bo
J
N, _ 2
b INJO'H-%ﬁmO)%-bo
o
aj; = Nj + ag
a; = N; + ag
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3.1.8 Model Selection

Variational bayesian learning offers another important possibility: Variational
bound represent a criterion for model selection. In general, given an observa-
tion set Y hidden variables X, model parameters © variational bound can be
expressed as (see [4] for details):

P(Y, X|0)

P(X]0) dodX — D(q(0[Y)[|p(©))  (3.48)

M= / 4(O1Y) ¢(X|Y) o

where p(©) is parameters prior distribution, ¢(©]Y) and ¢(X|Y') are respec-
tively variational parameters posterior and variational hidden variables poste-
rior.

Expression 3.48 can be rewritten as:

M = /q(®|Y)q(X|Y)logP(Y|X,®)d®dX—|—/q(®|Y)q(X|Y)logP(X|®)d®dX-|-

/q(GIY)q(XIY)logq(X|Y)d®dX

It’s possible to compute in close form the three terms that compose 3.49.
For the first term:

/ 4(O|Y)q(X|Y)logP(Y|X,0)dOdX =
/ g(O1Y) [T a(XalY) D log P(Y]X,,0)dOdX =

Z/q(®|Y)Q(Xn|Y)logP(Yann,e)dedX:
" (3.50)

Let’s now write the hidden variables distribution as:

A(XnlY) = q(gn, Pn1, s Ont) = 4(9n)q(Dn1lgn)---4(Dnilgn) (3.51)

ZZ/ O|Y)q gn,¢n1,...,¢n1)logHP(Ynl|an,®):

n  hidden

2 3 alan)aénlan)atonlan) 3 [ (@1 105 P(Vatlgn: 601.0) =
n  hidden
Z Z ¢n1|gn) (¢nl|gn) ZZO.QN P(Ynllgn7¢nl) -
!

n  hidden

Z Z q(gn) qu((lsnllgn)lOgNP(Ynllgm¢nl) =
L ¢

n  gaussian

ST03T alen) D (a(ént = Olgn) log P(Yoilgn, énr = 0) +

n  gaussian I

+ (601 = 1lg) log POt =1) =

Z Z Wi 5 Z exrp azgl) — + 6xp(bzgl) b”'l)

n  gaussian l Cijt
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For the second term of 3.49:

/q(GIY)q(XIY)logP(X|®)d@dX =
[ a@1v) TLatx. v )iog [T P,I0)XdO =

> [ atxalv) / 0O1V) Loy P(X,10)dX d0 = Y 3 a(Xal¥) [ a(®IV oy P(X[0)d0 =

n n  hidden

Z Z 4(Sn1lgn)--a(dnilgn) / q(O[Y) log {P(9) P (0n1lgn)-.-P(nilgn) }dO =

n  hidden

37D 4(90)9(0n119n)---a(Dnilgn) {log Pgn) + log P(n1lgn) + -+ log P(nilgn)} =

n  hidden

ST > algn)llog P(gn +Z{q b1 = 0)log P(¢n1 = Olgn) + q(n1 = 1)log P(énr = 1|gn)}] =

n  gaussian
Z Z wn][a] =+ Z{a]”l Pay + —Plgl}]

n gausszan

For the third term of 3.49:
[ (@1y)ax1¥)iog o(X|Y)d0X =

/ g(O1Y) [T a(XnlY)log [ a(XnlV)dOdX =
/ H‘J(Xn|Y)Z log ¢(X,|Y)dX =
S0 algn)a(dnilgn)--a(Snilgn) 1og [9(9n)4(Gn1lgn)--q(Snilgn)] =

n  hidden

S algn)lloga(gn) + > _{P(éni = 0lgn)log P(éni = 0lgn) + P(éni = 1lgn)log P(éni = 1|gn)}] =
!

n  gaussian
Gint g Linl 4 bint, bjni
20 3 wnilloguni + 3 (T oo T+ Tog T

C C C
n  gaussian ]nl jnl jnl
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Chapter 4

Supervised learning and

HMM

4.1 Supervised learning

The approach we considered so far assumes that observation labels are not
available. Anyway this is not the case if the training is a supervised training. In
this case the model we have previously used can still be used to infer the feature
saliency; if labels are provided we don’t need to learn model structure because
components number is known. Because of the fact we know the gaussian to
which the training element belongs to, there is no need for weighting gaussian
components.

Given a training set Y = {y1, ..., yn} and a given function g¢(.) that assign a
class to each training element we can write likelihood like:

log P(Y|©) = Z log p(yilg(yi)) = Z log TT(oep(wirlgyn)) + (1= p)p(wir|\))
Z Z : (4.1)

where 6,(,,) indicates parameters of class g(y;), and X indicates parameters
independent by classes.

In other words the only hidden variable in this model is now feature saliency.
EM formula can be simply deduced by formula in section 2.2 assuming that
hidden variables z; are actually known.

4.2 Hidden Markov Models

The most popular model in speech recognition is HMM. State pdf are generally
assumed to be gaussian distributions or mixture of gaussian distributions. In
this case another hidden set of variables represented by state sequence must be
considered.

The feature selection framework can be used also in modeling the state pdf
in the same way as previously defined. For parameter learning classical Baum-
Welch algorithm can be used. If model selection must be done HMM can be
learned using VB learning (see [4]).

17
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Chapter 5

Experiments

5.1 Synthetic data

To test GMM /feature saliency methods, we generated 1000 vectors of dimension
5 using a 3 component GMM with following mean vectors:

meanl = [0,0,0,0,1]
mean2 = [—1,0,—1,—1,1]
mean3d = [1,0,1,—1,1]

and diagonal covariance matrix. GMM weighs are respectively 0.3 0.4 and 0.3.

We can notice that feature one and three can discriminate between three
gaussians, feature 4 cannot discriminate between m2 and m3, and features two
and five cannot discriminate at all. In an i1deal experiments we should have
$1=¢3=1,02=¢5 =0 and 0 < ¢4 < 1.

Instead of using features unable to discriminate between models, simply
noisy could be added to three different gaussians. We run experiments even in
noisy environment having same results.

5.1.1 Feature saliency and component number

In this experiment we run GMM with feature saliency as described in section
2.1 changing the gaussian component number from 1 to 10. Feature saliency is
represented in figure 5.1.

The three discriminant features get ¢ = 1 for all initial component values.
On the other side feature saliency for features two and five shows huge varia-
tion depending on the component number. Here comes the need of finding a
technique that can determine the correct number of components.

5.1.2 MML versus Variational Bayesian

MML method and VB method were compared on the same task. Concerning
feature saliency both methods were successful assigning ¢1 = ¢3 = ¢4 = 1 and
¢2 = ¢5 = 0. On the other side MML have much more difficult to identify
the correct cluster number. Both techniques actually suffer from local minima
problems; while using VB with different initialization we were always able to

19



detect the correct cluster dimension, MML often gets stuck in local minima that
generate some extra components. Furthermore VB converges always faster than
MML (as it was already outlined in [4]).

Figure 5.2 represents the variational bound function of the iteration number:
convergence 1s achieved after few iterations. Figure 5.3 represents number of
surviving components function of iteration number: here again after few itera-
tions convergence is achieved and correct number of cluster is found (3).

Figure 5.4 represent log-likelihood function of iteration for MML/EM tech-
nique: in this case convergence is slower, but the most important problem is
shown in figure 5.5 where component number is function of iteration; more than
400 1teration were needed to converge.

Obviously those results are shown with a single initialization but using dif-
ferent initialization we verified the same problem.

5.1.83 KL distance between clusters

After running feature selection, we have all features sorted on the base of their
“saliency”. A simple way to see the measure of relevant and irrelevant features
is the KI. distance between different cluster components.

KL distance between two gaussian distributions ¢(z) = N(J;;,uq,Eq_l) and
p(z) = N(z; pp, Xp) is given by:

R by _ _ d
RL{gllp) = 0,510 ([ 405 TS5 5,)40.5ty—s) S5 sy =ps) -5 (5.1
q
1.1
1t $ ¢t s s @ @

0.9

)
208
2
®
n
o
=
@ 0.7
—*— feature 1
0.6 -©- feature 2 q
+- feature 3
& feature 4
—v— feature 5
0.5¢ B
0.4 Il Il Il Il Il Il Il Il
1 2 3 4 5 6 7 8 9 10

gaussian components
Figure 5.1: Feature saliency vs. component number; it’s not possible to distin-

guish between features one, three and four because they have almost the same
value (1)

20



x 10°
18

14+ 4

12 q

=
o
T
I

Variational bound

0 I I I I
0 10 20 30 40 50 60 70

Iteration number

Figure 5.2: Variational bound vs. number of iteration

In our case each feature distribution is actually represented as a gaussian
mixture with two components, the first one cluster dependent and the second one
cluster independent. KL distance can be estimated numerically, or eventually
an average pair-wise KL distance can be used (introduced in [5]); given two
GMM gq(z) = >, i N(2; ptiq, Ei_ql) and p(z) = Zj BN (z; pjp, Xjp) the average
pair-wise KL distance can be written as:

PKL(q||lp) = Z Z a; K L(qi||p;) + aslog %
— i

? J

(5.2)

We can so define a pair-wise KL divergence:

D=> "> (PKL(pillp;) + PK L(p;l|p:)) (5.3)

PG

Features are progressively removed on the base of their saliency and expres-
sion 5.3 is computed using the new feature subset. Result is shown in figure
5.6.

In Figure 5.6, it’s evident that removing the less relevant features (i.e. fea-
tures that cannot discriminate between gaussians) leaves unchanged the pair-
wise KL distance between cluster components; when relevant features are re-
moved suddenly the KL distance decrease.

5.1.4 Observation entropy

The second criterion is based on data entropy; let’s define as in [1]:

wij « &; p(yil®;) vij < &5 p(yilOu) (5.4)
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Figure 5.3: Number of components vs. number of iteration for variational
bayesian learning; Y axis is logarithmic scale

w;; measure the probability of the observation y; to belong to cluster j and not
to the common data distribution whose probability is given by v;;. In the case of
only relevant features, it should be w;; = 1; a simple way to measure how good
the feature subset is, consists in entropy H(w;;) = 1/n >, Zj w;; log(w;j;).

5.2 Speech Recognition

In this section we describe experiments we run on speech data obtained by the
TIMIT database.

A huge number of front end techniques have been proposed with high re-
dundancy between them because based almost on the same principle. To study
the efficiency of algorithms previously proposed we tried to determine feature
saliency of following feature set: 12 MFCC+12 A+12 AA/12 PLP4+12 A+412
AA. Data from the TIMIT database are processed in order to obtain a 75
component features vector.

Feature saliency algorithms (MMTL and VB) have been applied to the feature
set with respectively a training set of dimension 2k,20k and 200k, in order to
study the robustness w.r.t. the amount of data.

Figures 5.7,5.8,5.9, shows feature saliency obtained by the MML feature
selection algorithm with respectively 2k,20k and 200k training observation; Fig-
ures 5.10,5.11,5.12, shows feature saliency obtained by the MML feature selec-
tion algorithm with respectively 2k 20k and 200k training observation;

Of course we tested the efficacity of the selected features, using respectively
the first 24 and 39 more robust features.
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Figure 5.4: Loglikelihood vs. number of iteration

data amount 2k 20K 200K
MML learning (24 features) N/A ]593% | 60.17 %
VB learning (24 features) | 57.23 % | 60.6% | 61.8%
MMTL learning (39 features) N/A ]64.6% | 64.6%
VB learning (39 features) 64.4 % | 64.6% | 65.7%

Table 5.1: Recognition rate

5.3 Conclusion

After running experiments on synthetic and speech data we can conclude that
using VB learning has many advantages compared to MML learning. First
of all; VB converges faster than MML, saving computational time. Then VB
seem to determine features in a more robust way; it comes from the fact that
recognition rate coming from VB selected features is always higher to recognition
rate coming from MML selected features. This is probably due to the fact
that the clustering is pretty different for the two approach. Furthermore VB
learning benefits form regularization effects coming from prior distributions.
This can be seen when very few training data are used: MML based method
prunes almost all components, while VB based method achieved a “regularized”
solution probably thanks to priors.
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Figure 5.5: Number of components vs. number of iteration for MML/EM algo-
rithm
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Figure 5.6: PKL distance between clusters obtained progressively removing
features on the base of their saliency
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Figure 5.7: Feature saliency with MMTL algorithm (inferred components 2) with
2000 training vectors
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Figure 5.8: Feature saliency with MML algorithm (inferred components 68)
with 20000 training vectors
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Figure 5.9: Feature saliency with MML algorithm (inferred components 100)
with 200000 training vectors
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Figure 5.10: Feature saliency with VB algorithm (inferred components 48) with
2000 training vectors



Feature saliency
o o o o
6] (0] ~ 0
I I I I
1 1 1 1

o
IS
T
!

30 40 50 60 70
Feature number

. ul I e ‘
10 20

Figure 5.11: Feature saliency with VB algorithm (inferred components 50) with
20000 training vectors
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Figure 5.12: Feature saliency with VB algorithm (inferred components 75) with
200000 training vectors
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