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Zero-Forcing Electrical Filters for
Direct Detection Optical Systems

Peter C. Li, Member, IEEE, and Pierre A. Humblet, Fellow, IEEE

Abstract— Intersymbol interference (ISI) in direct detection
optical systems can limit channel spacing in frequency division
multiplexing systems, and data rates, and transmission distances
in long-haul transmission. It is desirable to reduce or cancel ISI
in these situations. We investigate zero-forcing electrical filters to
cancel ISI, and obtain tight performance bounds for minimum
noise variance zero-forcing filters.

We apply the results to Mach-Zehnder and Fabry—Perot filters,
and to fibers with second order dispersion. We compare the
performance of zero-forcing filters to that of rectangular impulse
response filters and find that zero-forcing filters are advantageous
in severe ISI situations with multilevel signaling.

I. INTRODUCTION

E CONSIDER direct detection optical systems where

the receiver front-end is composed of an optical filter,
a photodetector, and a low-pass electrical filter. In frequency
division multiplexing systems, an optical demultiplexing filter
is placed before the photodetector to select the desired signal.
When the channel spacing gets small, the filter bandwidth
needs to be narrow. This introduces intersymbol interference
(IS]) for the desired signal. This distortion can limit the spacing
of channels and prevent multilevel signaling. In long distance
transmission, the fiber itself plays the role of an optical filter
as it disperses the transmitted pulse. The dispersion of the fiber
causes ISI by broadening the transmitted pulse.

The nonlinearity of the photodiode makes the ISI problem
that we consider nonclassical [1], [2]. Other signal processing
approaches to receiver designs and techniques to reduce IST are
presented in [2]-[5]. The originality of this work is that we
present a framework to study optical ISI in direct detection
systems and to design optimal filters from basic principles.
Optical domain techniques can also be utilized, see [6] and
[7] and the references therein. They can complement our
approach.

Based on the model presented in Section II, we consider
in Section III the post-detection signal space. It plays an
important role in Section IV, where we design zero-forcing
receivers. In Section V, we consider applications in frequency
division multiplexing systems, and long-haul systems. Re-
ceiver structures constructed using the least mean square
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Fig. 1. The receiver front-end includes an optical filter, a photodiode and a

low-pass electrical filter followed by a sampler.

criterion are presented in [8] while those for decision feedback
and maximum likelihood are presented in [9].

II. MODEL

In our model, a chirp-free transmitter sends pulse modulated
signals to a receiver. The transmitted signal can be written as

s(t) = \/§Re{ i arg(t — kT)eﬂ’ffrt} (1)

k=—o00

where g(t) is the complex envelope of the transmitted pulse.
The kth transmitted amplitude is ax. The carrier frequency is
fe» and the baud rate is 1/7. Although we deal with direct
detection, phase variations can be helpful in some cases. This
is discussed in the Appendix. For now, we assume the a;’s are
real. In particular, we consider the following set of transmitted

amplitudes
ake{ﬂ/ﬂ—/_—llogngq} 2)

where M is the number of signaling levels. The square root
in (2) allows the post-detection product amplitude, az, to be
evenly spaced. The factor M —1 in the denominator normalizes
the peak amplitude to one and the mean square to 1/2.

When comparing different M-ary signaling sets, we keep
the bit rate fixed. The transmitted symbols are sent at a slower
rate, compared to the two level case, so we elongate the
transmitted pulse in time by a factor of log, M. It follows from
the above assumptions that the peak and average transmitted
power are independent of M when the transmitted pulses do
not overlap in time. Under the same assumptions, the average
energy per bit is also independent of M.

The transmitted signal is passed through an optical filter that
models either a dispersive fiber-optic channel for long-haul
transmission or an optical demultiplexing filter for frequency
division multiplexing systems. In Fig. 1, we show the optical
filter followed by a photodetector and a low-pass electrical
filter. This shows the receiver front-end where the optical
signal is converted to an electrical signal.
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We write the received signal after the optical filter as
z(t) = ﬁRe{ > ap(t - kT)ejz"fCt} )
k=—c0

where p(t) is the complex envelope of the received pulse
taking into account the transmitted pulse and the channel
response.

The photodetector is modeled as a square-law device whose
output is proportional to the magnitude square of the received
signal envelope. The post-detection received signal, r(t), can
be written as

()= Y aaplt— Tt — D) +n) @

i,j=—00

where * denotes the complex conjugate. The thermal noise,
n(t), is assumed to be the dominant source of noise, modeled
as additive white Gaussian noise. Since the left hand side of
(4) is real, we can take the real part of the right hand side.
We can rewrite (4) as

rt) =) aia;pi(t) +nlt) )

1,j=—00

where p; ;(t) = Re{p(t — iT)p*(t — jT)}. We refer to the
pi,3(t)’s as product waveforms.

III. SIGNAL SPACE

The signal spaces that we consider in designing the zero-
forcing filters are the following. We let the desired signal be
a?)po,g(t) in (4) and we consider the other a;a;p; ;(¢)’s as ISI
waveforms. The IS1 space, I, is the space spanned by p; ;(¢)’s
without pgo(t), and the signal space is the space spanned by
I and poo(t).

We can describe the set of product waveforms in a more
convenient manner by using the following:

Pij(t) = p;i(t). ©)

From this property, we need only consider the following subset
of product waveforms:

{pis(t) 1> 3} )

These product waveforms are also related in that one product
waveform can be written as another product waveform shifted
in time, i.e., another way of expressing the above set of product
waveforms is to consider the following:

pi,;(t) = po,j—i(t —T). (8)

Let k& = j — 4. Making this substitution in (8), we can rewrite
(7) as

Por(t—iT) |k <0 and —oo <i< oo} ©)
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A. Dimension of the Signal Space Per Baud

In defining the dimension of the signal space per baud, we
consider the following signal space. We have a finite set of
transmitted amplitudes, a1, ..., a,, and the other amplitudes
set to zero. Then the electrical signal is a weighted sum of
product waveforms in

{pit)|1<i<n and 1<j<n}.  (10)
The signal space composed of product waveforms in (10) has
a finite dimension, say d,. We define the dimension of the
signal space per baud as D = limsup,,_,. dn/n. When the
duration of the complex envelope of the received pulse p(%)
is finite, D is finite. The converse does not hold, i.e., later we

will see in Section V a case where D is finite but the duration
of p(t) is infinite.

B. An Approximation to the Signal Space

For numerical computation, we want to be able to make
an approximation to the signal space by removing waveforms
whose energies are relatively small. From (9), we see that
the product waveforms p; ;(¢)’s are time-translated versions of
po,;(t)’s for 7 < 0. For our approximation, we only consider
ps,7(t)’s that are time translations of pg ;(t)’s for =k’ < j < 0.
The value of k" is determined as follows. Let

L= (po,—i»po,~i) (11)
;=0

2

be the sum of the energy of py _;(¢)’s such that ¢ > 0. Let &’
be the smallest positive integer such that

.
YL <Y (po,—ir o)

=0

12)

where «y is a fraction between zero and one. Let 5’(7) be the
signal space for the remaining set of waveforms when &’ is
a lower bound to & in (9). For example, 5’(0_90) is the signal
space when v = 0.90.

C. Intersymbol Interference

An interference free signal would be

r(t) = > alpii(t) +n(t) 13)

and we will see in the next section how that goal can be
achieved. However, we note that ISI can be helpful in the case
of binary on—off modulation when the p; ;()’s are nonnegative
and concentrated around ¢ = 7', which happens in some
applications. There is then little interference with off signals,
because a; = O in the crossterms of (5), and the interference
with on signals is constructive. However, the nonnegativity of
the p; ;(t)’s offers no advantages when M > 2.
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IV. ZERO-FORCING FILTERS

In Section IV-A, we introduce the normalized eye opening
as our performance parameter. In designing the zero-forcing
filters, we first specify the zero-forcing conditions in the
time domain and in the frequency domain. These conditions
are presented in Sections IV-B and IV-C. Then we consider
approaches to construct zero-forcing filters that minimize the
noise variance in Section IV-D.

A. Normalized Eye Opening

We refer to the vertical openings of a noiseless eye diagram
at the sampling time as “eye openings.” There are M — 1
eye openings for M-ary signaling. We call the smallest eye
opening the normalized eye opening, £, when the electrical
filter is normalized to have unit energy. For a zero-forcing
filter with amplitude set (2), the eye openings have equal
magnitudes and

symbol error rate =

2AM —1) ¢
o) e

2
where Q(z) = L [*e™Tdy and N,/2 is the spectral
density of the additive white Gaussian noise [1]. We assume
that the decision thresholds are set at mid-points of eye
openings and the transmitted symbols are equally likely.

B. Time Domain Zero-Forcing Conditions

For the time domain and frequency domain conditions, we
assume the transmitted amplitude set is stationary. We can
consider the zero-forcing conditions for time ¢ =0 without loss
in generality. From (5), we write the output of the electrical
filter at time ¢ =0 as

y(0) = aia; /Pi,j(a)h(a)da +N

2

5)

where h(t) is the time-reversed impulse response of the
electrical filter and N is the noise at the sampled output. We
can also write the integral [ p; ;(t)h(¢)dt as an inner product
(pi > h)-

Let the sampled output be the noiseless part of the electrical
filter output at time ¢ =0. A filter h(¢) is a zero-forcing filter if
the sampled output has no IS, i.e., we want the sampled output
to depend only on a2. When zero is a possible transmitted
amplitude, the necessary and sufficient condition for h(t) to
be a zero-forcing filter is

{(poo,h) #0, and (pij,h) =0,

fori 20 or j#0.
If this condition is satisfied, the sampled output depends only
on the a? term so there is no ISI. To show the necessary
part, note first that for a single symbol transmission at time
t = 4T, the sampled output is a;a;(pi:, h). Hence, it is
necessary that (p;;,h) == 0 for i # 0. For two symbol
transmissions at ¢ = 4T and ¢ = 37, the sampled output
is aiai(pi)hh) + ZGiaj<pi,j,h) + (leLj(])j)j,h). Apply the
necessary condition of the single symbol case. Then, it is
necessary for (p; ;,h) = 0 when 4 # 0 or j # 0.

(16)

In [9], the necessary and sufficient conditions for zero-
forcing are presented when zero is not a possible transmitted
amplitude. Condition (16) applies to systems where there is a
nonzero component of |p(t)|? orthogonal to the IST space.

C. Frequency Domain Zero-Forcing Conditions

We can rewrite (16) as
/ Re{p(t — nT)p*(t — mT)}h(t)dt
. ) {K7
0,
where K # 0. Equivalently, we can write

S (Dnim h)8(ts — nT)8(ts — mT) = K§(t1)8(t2)  (18)

n,m

ifn=m=0

otherwise a7

where §(t) is the Dirac delta function. Taking the two dimen-
sional Fourier transform, we can express the above equation

as
S (-5 ()
er(ne 5)e(- %)

-H<f1+fz—n;m>=lf

19)

for all f, and f5. P(f) and H(f) are the Fourier transforms of
p(t) and h(—t), respectively. This is a generalized Nyquist’s
criterion in the frequency domain.

When p(t) is real, (19) reduces to

L5 p(n B)e(s- B(s - T) =5
(20)

It follows from (19) and (20) that the minimum bandwidth for
a pulse that can satisfy the zero-forcing condition is —21?; this
is the same as the classical linear channel case.

D. Minimum Noise Variance Zero-Forcing Filters

Among the filters that satisfy the zero-forcing condition
(16), we are interested in the one that minimizes the noise
variance when (pgo,h) is set equal to a constant; we will
refer to this filter as the optimal zero-forcing filter. For the
amplitude set that we consider, the optimal zero-forcing filter
also maximizes the normalized eye opening.

Note that the time-reversed impulse response of the electri-
cal filter, h(t), can be decomposed into a component in the
signal space and a component orthogonal to the signal space.
Since we are interested in minimizing the noise variance,
we set the orthogonal component to zero, leaving the signal
space as the relevant space to consider in designing the filter.
Within the signal space, we want h(t) to be proportional to
the component of pyo(t) orthogonal to I. This is similar to
the approach in [10].

The normalized eye opening of the zero-forcing filter that
minimizes the noise variance may be difficult to evaluate
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analytically. We can, however, determine upper and lower
bounds in Sections IV-D1 and IV-D2, respectively.

1) Upper Bound: For the upper bound, we consider a fi-
nite set of transmitted amplitudes, a_; - - - a;, with the other
amplitudes set to zero. The signal space involving these
amplitudes is a finite dimensional space, which we call S;.
Let I; be the corresponding ISI space generated by product
waveforms p; ;(t) € S; excluding the waveform pg o(t). Let
$1(t), ..., ¢, (t) be orthonormal waveforms that span I;. Let
hi(t) be the component of pgo(t) orthogonal to the ¢(%)’s
and normalized to have unit energy. This waveform is also
the additional waveform needed to form a set of orthonormal
waveforms h;(t), $1(t), ..., ¢, (t) that span the space S;. For
the amplitude set that we consider, the eye openings are the
same. In particular, we can write the normalized eye opening
as 37— (po,0, hu) for the signal space S;. We can compute
(po,0, hi) as follows:

po,o(t) = (po,o, hi)hu(t) + Z<po,o, P:i)gi(t) (1)

n

{Po,0,P0,0) = (P00, h1)* + Z(po,m ¢i)? (22)
=1
and
(po,0, i) = , | (0,0, P0,0) — Z(po,07¢i>2- (23)

i=1

As we add more ISI waveforms, (poo.h;) decreases mono-
tonically because there are additional interference signals and
additional ¢;(t)’s being added to (23). Thus, w2 (po.o. hu) is
an upper bound to the infinite sequence case.

Note that h;(¢) is not a zero-forcing filter for the infi-
nite sequence case as it was generated from a finite set of
transmitted amplitudes. Note also that when 1=0, there is no
ISI waveform involved and we get the matched filter bound,
ﬁ\/ (P00, Poo)-

2) Lower Bound: In this construction, we restrict the elec-
trical filter response to the interval [uT,vT]. Let A, ()
denote this filter. The filter output is

a0ao(ph o, hpu) + D asas(ph i)+ N @4)

. pi €1 noise
signal

ISI

where p] .(t) is the restriction of p;;(t) to the interval
[uT', vT]. When the number of nonzero p; ;(t)’s is finite, the
optimal Ay, (t) can then be constructed as in Section IV-
D1. This is illustrated with the Mach-Zehnder example
in Section V-B. The resulting filter is a true zero-forcing
filter. Otherwise, we can resort to selecting a finite set of
p;;(t)’s as an approximation to the actual lower bound
when carrying out the computation. The normalized eye
opening, w7 (Pb o> u,v)), increases with the width of
[uT',vT)] because one optimizes over a larger set of possible
responses. Thus, 17 (pj o; hju,s]) is a lower bound to the
infinite sequence case. The upper and lower bounds approach
each other as n, —u, and v increase.
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V. APPLICATIONS AND EXAMPLES

In applying the formulations from Section IV, we con-
sider four examples. The first example considers a Gaussian
pulse; the second and third examples involve the use of
Mach-Zehnder chain interferometers and Fabry—Perot inter-
ferometers for the optical demultiplexing filter; and the fourth
example considers long-haul transmission. For these examples,
we plot the impulse response and the frequency response of the
optimal zero-forcing filter, and eye diagrams for the rectangu-
lar and zero-forcing filters. Then we plot the normalized eye
opening £ in dB, i.e., 10log; (). for the matched filter bound,
the zero-forcing filter, and the rectangular filter, using two,
four, and/or eight level signaling. Note that the normalized
eye opening is proportional to the received optical energy.

A. Gaussian Pulse Example

When we have a Gaussian received optical pulse, p(t), we
show that the zero-forcing filter does not exist. Letgthe received
2
optical pulse be normalized such that p(t) = e~* /% ; then

pig(t) = e~ (t=iT)?/o® —(t—3T)? /o? (25)
and they are positive. When j = —i, we have p; _;(t) =
e=2"T* /7% g o(t). The desired product waveform poo(t) is
proportional to p; _;(t). Thus, the component of pgo(t) or-
thogonal to the ISI space is zero. A zero-forcing filter does
not exist for this very peculiar case. Minimum mean square
error filters [8] can handle Gaussian pulses.

B. Mach~Zehnder Chain Interferometer Example

In this example, we consider using a Mach—Zehnder chain
interferometer as the optical demultiplexing filter for frequency
division multiplexing applications. The Mach—Zehnder chain
interferometer is composed of a cascade of Mach—Zehnder
interferometers. Let AL be the length difference between the
two branches of the Mach—Zehnder interferometer at the first
stage. Let the length difference be 2~ AL for the ith stage
and let K be the number of stages. Further characterization of
this interferometer is presented.in [11].

The impulse response of the Mach-Zehnder chain interfer-
ometer is

M2

> (2i~l)£>

| §(t R
i=—M/24+1

where v is the speed of propagation in the medium and
M = 2K The corresponding frequency response is

sin(Mr222) ke o
- Y Le .
Msin(wﬂ)

v

(i

gmz(t) = (26)

sz(f)

The frequency response G, (f) is periodic with the main
transmission peaks separated by .

We are interested in passing the received optical signal at
a transmission peak, say f,, of the demultiplexing filter. The
width of frequency interval between f, and an adjacent peak is
equal to x7. Since the filter is a channel selection device, we
want the width <7 to cover the system bandwidth, including
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all the channels. As the number of channels increases, the
width 3% needs also to increase. Let = f— f, be the
frequency shifted by f,. For the channel, we are interested
where f is close to fo, | A]; r | < 1becomes true as the number
of channels increases, and the equivalent baseband channel
response is well approximated by sin(M n%fl) /(M W-Af;—fl).
We drop a constant phase factor which does not affect the
photodetector output.

Note that the frequency response has zeros spaced by
WAL = # where ¢ = M—VATA. We will consider only the
case 0 < ¢ < 1. The zeros in the frequency domain can be
used to suppress interchannel interference. In the time domain,
the complex envelope of the impulse response is rectangular
with height % in the interval [—<L, <F] and zero otherwise.

We assume that the transmitted pulses are non-return to zero
(NRZ). They are simplified versions of pulses used in practice.
The complex envelope of the transmitted pulse g(t) is one in
the interval [~ %, 2] and zero otherwise. The received signal
envelope p(t) is trapezoidal with a base extending on [—(1 +
¢)/2,(14c)/2] and a top extending on [—(1—¢)/2,(1-¢)/2].

For the upper bound construction, we consider the ampli-
tudes a_n, ..., Gy, setting the other amplitudes to zero. Due
to the finite duration of the received pulse, which is between
T and 2T for ¢ between zero and one, the nonzero p; ;(£)’s

are the following:

{pii(@®) | —n <i<n}and {pii-1(t) | —n+1 <3< n}.
(28)
Note that the signal space has dimension D = 2.

For the lower bound construction, we consider the signal
space spanned by product waveforms restricted to the interval
[-nT,nT]. The set of nonzero truncated product waveforms
vl j(1)'s are

{pla(t) | -n<i<n}and {p;; 1(t) | —n+1<i<n]

, 29)
These product waveforms are shown in Fig. 2, where n = 1
and ¢ = % In Fig. 2(b) the lower bound is for v = —1 and
v = 1. Note that the number of product waveforms that we
need to consider is 4n + 1 for the upper and lower bound, and
that the product waveforms are nonnegative.

For this example, the bounds show that the optimal filter is
well approximated by a finite duration response /;_gr 37)(t)-
In Fig. 3, we plot the time and frequency response of
hi—ar,37)(t) when ¢ = 1, as well as the resulting eye diagram.

Figure 4 shows the normalized eye openings for the
Mach-Zehnder case. The performance of the zero-forcing
filter is determined by the bounds in Section IV-D. It is not
distinguishable from that of hi_sp a7(t).

The zero dB point is the eye opening for the binary
case without ISI. The parameter ¢ = (TR is inversely
proportional to the optical filter bandwidth (Section V-B) and
is proportional to the bit rate Ry, i.e., the bandwidth efficiency
in units of (b/s/Hz) increases with ¢/. When ¢ =0, there is

no ISI introduced and the vertical offset is due to the scaling

log, M .
factor —ME%— to keep the bit rate and the average energy

per bit the same for different M. When ¢’ is increased, there
is more ISI and the normalized eye opening decreases. The

0.8
0.6
0.4r
0.21

0.8
0.6
0.4r
0.21

-2 -1.5 0
time (T)

(d

Fig. 2. Product waveforms involved in the upper and lower bounds when
n = 1. Shown in solid and dashed lines are the product waveforms for (a)
the upper bound and (b) the lower bound.
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Fig. 3. The optical filter is a Mach-Zehnder interferometer chain. The
plots show (a) the impulse response and (b) the frequency response of the
zero-forcing filter h{_gp 37)(t) when ¢ = 1. The eye diagrams of the
rectangular and zero-forcing filters are shown in plots (c) and (d), respectively.

matched filter bound curves also decrease due to the decrease
of the electrical pulse energy.

Figure 4 shows that the zero-forcing filter and the rectan-
gular filter have about the same performance for two-level
signaling. For four- and eight-level signaling, the performance
difference is more noticeable; the zero-forcing filter has much
better performance. For the range of ¢ that we consider, there
is no advantage to four- and eight-level signaling, mainly
because the IS introduced by the optical filter is relatively low.
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normalized eye opening (dB)

Fig. 4. The optical filter is a Mach—Zehnder interferometer chain.The curves
are labeled as follows: (M) matched filter bound, (Z) zero-forcing filter, (R)
rectangular filter, and (2, 4, 8)-level signaling.

C. Fabry—Perot Interferometer Example

For this example, the optical demultiplexing filter that we
consider is a Fabry—Perot interferometer. This type of inter-
ferometers can be implemented on the fiber itself [12]-[14]
which allows for compact constructions. More detailed char-
acterization of this interferometer is presented in [11] & [15].
We write the frequency response as

1—r?

Grr(f)

where 7 is the reflection coefficient of each of the mirrors and
tq is the round trip delay of the field between the mirrors.

The frequency response has a peak when ft; is an integer.
We are interested in passing the received optical signal at a
transmission peak, say f,, of the demultiplexing filter. The
width of frequency interval between f, and an adjacent peak
is equal to %1; Let f' = f— f, be the frequency shifted by f,.
Using the argument in the Mach—Zehnder chain interferometer
example and for the channel we are interested in where f is
close to f,, | f'ta] < 1 becomes true and the baseband channel
response is well approximated by ﬁﬁ)'

The complex envelope of this impulse response is e ~¢/™
for t > 0, where 7T = fﬂ% and R = r%. Let Bpp be the 3
dB bandwidth of the filter. Then

1
’/TBFP‘

(30)

T =

Let the transmitted pulse equal one in the interval [0, 7] and
zero otherwise. Then the received pulse is

1—e 77, 0<t<T

plt) = {(el/T —De7r, t>T.
All p; ;(t)’s have the same exponential tail and they are
nonnegative. It follows that the p; ;(¢)’s can be expressed as
linear combinations of time-shifted versions of only pg o (t)
and po,_1(t); thus D = 2. For this example, the optimal
filter is well approximated by a finite duration response

(€3]

2 T 1.5
1ho . .
M ' =
;? A A =) :
= 0 Y I .
_1 A .
-2 0 :
-10 -5 6] 10 -10 -5 0 5 10
time (T) frequency (1/T)

(a) (®)

filter output
filter output

(d)

Fig. 5. The optical filter is a Fabry-Perot interferometer. The plots show
(a) the impulse response and (b) the magnitude of the frequency response of
the zero-forcing filter h[_5T75T] (t) when 7 = 1. The eye diagrams of the
rectangular and zero-forcing filters are shown in plots (c) and (d), respectively.

hi-s7,571(t), based on the upper and lower bound considera-
tions in Sections IV-D1 and IV-D2. Fig. 5 shows the impulse
and frequency response of hj_sr 57)(t) when 7 = 1, as well
as the resulting eye diagram. Note the low DC response of
the filter.

Figure 6 shows the normalized eye openings for the Fabry-
Perot case. The performance of the zero-forcing filter is
determined by the bounds in Section IV-D. It is not distin-
guishable from that of hi_sp 577(%).

The zero dB point is the eye opening for the binary
case without ISI. The parameter 7/ = 7TR, is inversely
proportional to the optical filter bandwidth (Section V-C) and
is proportional to the bit rate R;; the bandwidth efficiency in
units of (b/s/Hz) increases with 7’.

As 7’/ increases, the optical filter bandwidth decreases and
there is more ISI. The normalized eye opening closes com-
pletely for the rectangular filter case. There is no advantage
to four and eight-level signaling for the rectangular filter, the
same conclusion as in [15]. On the other hand, the zero-forcing
filter performs much better and there is advantage to four-level
signaling for large values of 7'.

When ISI is small, having more than two levels of signaling
does not provide benefit. When ISI is severe, having four and
eight-level signaling provides better normalized eye opening
due to a reduction in the baud rate. However, this benefit
is achievable only if the design of the receiver can provide
sufficient mitigation of the ISI. Enough power should also be
available to tolerate the reduced eye opening.

D. Dispersive Channel Example

One of the impairments that limit data rates and transmission
distances is ISI due to fiber dispersion, where the index of
refraction of the fiber depends on frequency. Around the



LI AND HUMBLET: ZERO-FORCING ELECTRICAL FILTERS FOR DIRECT DETECTION OPTICAL SYSTEMS

normalized eye opening (dB)

1 L L

0.5 1 1.5 2
v

Fig. 6. The optical filter is a Fabry-Perot interferometer. The curves are
labeled as follows: (M) matched filter bound, (Z) zero-forcing filter, (I2)
rectangular filter, and (2, 4, 8)-level signaling.

center frequency of the transmitted signal, we can expand
the phase response of the fiber in terms of a Taylor series.
We model the nonlinear phase by keeping the second-order
term of the Taylor series expansion and write the response of
the dispersive channel as e=7*/*, where a is a scalar given
below and f is normalized frequency, i.e., frequency divided
by the bit rate. Using normalized frequency allows one to
compare systems with different frequency expansion factors
in a normalized way.

In the time domain, a transmitted pulse tends to broaden
in time as it travels through the transmission medium. The
pulse broadening is proportional to the distance that the pulse
travels. If we have a fixed distance of transmission, the bit
rate has two effects on the severity of ISI. The first effect
is that the transmitted pulse duration decreases when the bit
rate increases. The spectrum of the pulse becomes wider and
the signal is affected more by the nonlinearity of the phase
of the medium. Consequently, the relative broadening of the
pulse is more severe due to an increase in the data rate. The
second effect is that the relative tolerance for pulse broadening
decreases when the symbol duration is decreased. Due to these
two effects, the severity of ISI increases with the square of the
bit rate. These effects on the severity of ISI can be quantified
by

o TRENZD(A)L
¢

(32)

where R, is the bit rate; ) is the carrier wavelength; D(\) is
the dispersion of the fiber in units of (ps/km-nm); given a one
nm bandwidth pulse, one would expect the transmitted pulse
to broaden by a certain number of ps after traversing 1 km of
the fiber. Note that the parameter D depends on A. Continuing
with the other parameters, c¢ is the speed of light and L is the
length of the fiber.

For conventional fiber, D is about 15 ps/km-nm at A = 1.5
pm. Given the bit rate R, = 10'C bps and the transmission
distance I =100 km, we have o = 3.5. As another example,
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Fig. 7. The dispersive channel case. The plots show (a) the impulse re-
sponse and (b) the frequency response of the approximated zero-forcing filter
h/[—mrio'j‘] (t) when o = 4. The eye diagrams of the rectangular and
zero-forcing filters are shown in plots (c) and (d), respectively.
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Fig. 8. The dispersive channel case. The curves have the following labels:
(M) matched filter bound, (Z) zero-forcing filter, (R) rectangular filter, and
(2, 4)-signaling levels.

we decrease the bit rate by a factor of ten and increase the
transmission distance by a factor of ten. Then R = 10° bps,
L = 10® km and o = 0.35. »

The transmitted pulse is a rectangular pulse equal to one
for ¢ in [-Z, Z] and zero otherwise. In this example, we use
the approximated signal space §(0,95). In Fig. 7, we plot the
impulse and frequency responses of the approximated zero-
forcing filter when o = 4, as well as the resulting eye diagram.

Figure 8 shows the normalized eye opening for the dis-
persive channel case. The performance of the zero-forcing
filter is determined by the bounds in Section IV-D. It is not
distinguishable from that of h[_1o7 107 (t).
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In Fig. 8, the matched filter bound decreases with o because
the dispersive channel reduces the electrical energy of the
pulse, even though the dispersive channel is all pass in the op-
tical domain. We see that multilevel signaling is advantageous
at high bit rates when a zero-forcing filter is used, but not at all
with a rectangular filter. However, the length of the equalizer
increases with ¢, making the equalizer harder to implement.

VI. CONCLUSION

In this paper, we construct minimum noise variance zero-
forcing filters for direct detection systems and obtain tight
performance bounds. We apply them to practical situations.
We find that zero-forcing filters yield better results than
rectangular filters in multilevel signaling (M > 2) and in
severe ISI situations. However, practical implementation of the
filters is not considered in this paper and would need further
investigation. Important issues are the realization of discrete
time filters, the relation between filter performance and the
number of taps, and the development of adaptive filters.

APPENDIX

In this appendix, we consider phase variations for the
transmitted amplitudes. When the transmitted amplitudes are
complex, we write the post-detection received signal as

0o 2

Z a;p(t —4iT)} +n(t)

i=—00

r(t) = (33)

= 3 walp(t — Tt (t— 5T) + nlt). (34)

1,j=—00

The left hand side of the above equation is real, so we can
take the real part of the right hand side and write

Z Re{a;ajp(t —iT)p*(t — 5T)} + n(t)

r(t) =
A 35)
= i Re{aia] }pi () — Im{aia] }ai ;(t) + n(t)
A (36)
where
pi;(t) = Re{p(t —iT)p™(t - 4T)} (37
and
¢i,;(t) = Im{p(t — <T)p*(t — jT)}. (38)

The waveforms p; ;(t) and ¢; ;(¢) are the real part and the
imaginary part of p(t — iT)p*(t — jT'), respectively. We
will refer to these waveforms as product waveforms. This
representation is useful in that we see the post-detection
received signal can be represented as a weighted sum of
pq,j(t)’s and ¢; ;(t)’s. Moreover, we see the simplification in
the structure of the signal when any of the following quantities
are zero: Re{a;a}}, Tm{a;at}, p;;(t) and g; ;(¢). Note that
Im{a;af}, and ¢; ;(t) are always zero.
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Note that go,0(t) is zero and the rest of the ¢; ;(¢)’s are a part
of the ISI space. Adding these product waveforms would tend
to contribute to more ISI. However, having phase variation for
the transmitted amplitudes is useful in some cases. An example
where it is useful is the Mach—Zehnder example, where the
set of product waveforms are time-shifted versions of pg o(?)
and po 1(t). When detecting po o(t), the product waveforms
p0,1(t) and po,—1(t) tend to contribute a significant amount of
interference. These product waveforms can be set to zero by
using the following amplitude set

{\/M'i_1|0§iSM—1} if k£ is even
[ifas l0<i<m—1} ifkisoda

Then the received signal is composed of weighted sums of
Po,0(t) and time-shifted versions of pg(¢). This provides a
significant reduction in the amount of ISL.

For the Fabry—Perot example, (39) is not as useful because
the filters still need to be orthogonal to p; ;(t)’s that are
proportional to pg1(t) and pp _1(t). However, we would
expect improvement in performance for the Fabry—Perot case
when considering the least mean square receivers in [8]. Note
also that the p; ;(¢)’s that are set to zero when using (39)
are replaced by the corresponding ¢; ;(t)’s. These ¢; ;(t)’s do
not appear in the Fabry—Perot and Mach—Zehnder examples
because p(t) is real for these examples. However, the g; ;(¢)’s
do appear in the dispersive channel example when using (39)
because p(t) is complex. For the dispersive channel example,
we do not expect (39) to be helpful because the amount of
interference from p; ;(¢)’s and ¢, ;(¢)’s are about the same.

Ay € (39)
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