Information-geometric barycenters for Bayesian federated learning

Jamoussi, Nour; Serra, Giuseppe; Stavrou, Photios A; Kountouris, Marios
ICMLA 2025, 24th International Conference on Machine Learning and Applications, 3-5 December 2025, Boca Raton, FL, USA

Federated learning (FL) is a widely used and impactful distributed optimization framework that achieves consensus through averaging locally trained models. While effective, this approach may not align well with Bayesian inference, where the model space has the structure of a distribution space. Taking an information-geometric perspective, we reinterpret FL aggregation as the problem of finding the barycenter of local posteriors using a prespecified divergence metric, minimizing the average discrepancy across clients. This perspective provides a unifying framework that generalizes many existing methods and offers crisp insights into their theoretical underpinnings. We then propose BA-BFL, an algorithm that retains the convergence properties of Federated Averaging in non-convex settings. In non-independent and identically distributed scenarios, we conduct extensive comparisons with statistical aggregation techniques, showing that BA-BFL achieves performance comparable to state-of-the-art methods while offering a geometric interpretation of the aggregation phase. Additionally, we extend our analysis to Hybrid Bayesian Deep Learning, exploring the impact of Bayesian layers on uncertainty quantification and model calibration.


Type:
Talk
City:
Boca Raton
Date:
2025-12-03
Department:
Communication systems
Eurecom Ref:
8021
Copyright:
© 2025 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PERMALINK : https://www.eurecom.fr/publication/8021